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Abstract—Edge computing services are exposed to infrastructural failures due to geographical dispersion, ad hoc deployment, and
rudimentary support systems. Two unique characteristics of the edge computing paradigm necessitate a novel failure resilience
approach. First, edge servers, contrary to cloud counterparts with reliable data center networks, are typically connected via ad hoc
networks. Thus, link failures need more attention to ensure truly resilient services. Second, network delay is a critical factor for the
deployment of edge computing services. This restricts replication decisions to geographical proximity and necessitates joint
consideration of delay and resilience. In this work, we propose a novel machine learning based mechanism that evaluates the failure
resilience of a service deployed redundantly on the edge infrastructure. Our approach learns the spatiotemporal dependencies between
edge server failures and combines them with the topological information to incorporate link failures. Ultimately, we infer the probability
that a certain set of servers fails or disconnects concurrently during service runtime. Furthermore, we introduce Dependency- and
Topology-aware Failure Resilience (DTFR), a two-stage scheduler that minimizes either failure probability or redundancy cost, while
maintaining low network delay. Extensive evaluation with various real-world failure traces and workload configurations demonstrate
superior performance in terms of availability, number of failures, network delay, and cost with respect to the state-of-the-art schedulers.

Index Terms—Edge Computing, Failure Resilience, Quality of Service, Dependency Learning, Dynamic Bayesian Networks.
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1 INTRODUCTION

EDGE computing refers to the technologies for compu-
tation at the edge of the network by extending the

cloud with resource-constrained and distributed servers. It
renders significantly lower response times possible since the
computation is carried out in proximity of where inputs are
produced and/or outputs are consumed [1]. The demand
for edge computing grows due to the proliferation of mo-
bile computing and Internet of things technologies as they
multiply the amount of data produced and consumed at
the edge of the network. Edge resources can be utilized
either by end devices to offload code or by cloud services
to create proxies. In the former case, processing power of
the end devices is extended and their power consumption is
decreased. Whereas in the latter, response time is decreased
and backhaul bandwidth is preserved since most of the traf-
fic flows through the local area network. Failure resilience
of edge computing services is still an open issue and a big
obstacle to the adoption of the paradigm [2] particularly in
conjunction with the cost of redundancy. Service disruptions
cause significant revenue loss in a business setting. In 2017,
a four-hour outage of AWS is reported affecting 54 of the
top 100 online retailer services, which lost $150 million in
total [3]. Worse still, contemporary services are getting less
tolerant to downtime: average cost of a data center outage
has increased from $505,000 in 2010 to $740,000 in 2016 [4].

We observe more frequent failures at edge servers in
comparison to cloud counterparts due to geographical dis-
persion, which complicates management and maintenance,
and absence of advanced support systems such as fully du-
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plicated electrical lines with transfer switches, diesel backup
generators, clean agent fire suppression gaseous systems,
and direct liquid cooling. Moreover, the limited availability
of computation and storage resources restricts redundancy
at the edge. Particularly low reliability can be expected in
future smart contract and blockchain-based edge comput-
ing architectures, where arbitrary resources including user
equipment can be leased [5], [6]. Link failures should also be
taken into account because edge servers are typically con-
nected through less reliable networks (e.g., public wireless
networks) than centralized deployments such as cloud data
centers. Many failure resilience mechanisms designed for
cloud computing, only focus on node failures due to very
high reliability of intra data center networking.

Edge services are typically sensitive to computation and
communication delays and require near real-time interac-
tion, which adds another dimension to failure resilience.
Deploying edge services on servers selected solely to avoid
failures might result in the violation of quality of ser-
vice (QoS) requirements and particularly delay constraints.
Thus, failure resilience and network delay have to be op-
timized jointly. This is not the case for general distributed
systems, such as grid computing, where the tasks can be
executed on any node regardless geographical location or
delay. Moreover, resilience techniques such as re-execution
or checkpointing that are widely used in other distributed
systems may not be efficient or comparably effective in
an edge scenario due to high computational overhead and
delay. Thus, there is a need for resilience techniques that
take unique features and limitations of edge computing into
consideration so that cloud grade availability is possible [7].

In this work, we exploit spatiotemporal failure depen-
dencies among edge servers to improve the failure resilience
of services with minimum possible redundancy. To this end,
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we focus on the probabilistic analysis of concurrent failures.
Previous work in the field of system reliability already
showed a correlation between failures in various distributed
computing systems [8], [9] including edge computing [10].
Therefore, having replicas deployed at edge servers that
probabilistically fail in overlapping periods will deteriorate
or even nullify availability benefits of replication. To avoid
this, we propose a machine learning approach to compute
the joint failure probability (JFP) of edge servers. We model
failure dependencies as a dynamic Bayesian network (DBN)
trained from past traces. Then, we employ an efficient
inference algorithm to compute the JFP of a given service
deployment. Finally, we combine JFP with the link failure
probability (LFP) that is based on the edge network topol-
ogy to obtain overall service failure probability (SFP).

Furthermore, we propose Dependency- and Topology-aware
Failure Resilience (DTFR) algorithms, which optimize the
deployment of services on edge servers in terms of failure
probability, response time, and number of replicas. The main
idea is to deploy active replicas at the most proximate
servers in the first stage, and then to create as many standby
replicas as needed based on SFP to fulfill availability re-
quirements. Consequently, the minimum possible response
time would be achieved during the failure free period,
which constitutes most of the service run time. We evalu-
ate proposed algorithms using multiple real-world failure
traces with various availability characteristics. The results
demonstrate the effectiveness of our approach with respect
to state-of-the-art baselines in terms of service downtime,
number of failures, network delay, and redundancy cost.
Briefly, the main contributions in this work are as follows.

• A machine learning mechanism to forecast outages
in replicated, near real-time edge services,

• The replication and scheduling algorithms for such
services that ensure failure resilience and QoS.

Our hypothesis is that there exist spatiotemporal dependen-
cies among edge computing failures to such an extent that
dependency-aware failure prediction and task replication
results in substantially higher resilience. We believe, this
work is the first attempt to minimize the failure probability
of edge computing services under QoS or cost constraints.
Besides, it is the first analysis of dependent failures in large-
scale edge computing systems, to the best of our knowledge.
This work builds on our previous study of edge computing
failures [10], which introduces correlated node failures in
edge computing. In this work, we additionally incorporate
link failures as well as delay considerations. In the rest of the
paper, we first give an overview of our approach in Sec. 2.
Then in Sec. 3, we formally define the addressed problem.
We propose a failure model in Sec. 4 and present DTFR
algorithms in Sec. 5. Experiments and numerical results are
discussed respectively in Sec. 6 and 7. Finally, we review the
related work in Sec. 8 and conclude the paper in Sec. 9.

2 APPROACH

2.1 Use Case Scenario (Running Example)
In this work, we consider InTraSafEd 5G – Increasing Traffic
Safety with Edge and 5G project1 as our use case scenario.

1 https://newsroom.magenta.at/2020/01/16/5g-anwendungen/

S2

S1
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Fig. 1. The running example scenario to illustrate failure dependencies.

The project aims to improve traffic safety through real-time
video analytics at geographically distributed smart traffic
lights in Vienna. A very high level of availability (99.99%)
is required particularly for the detection of humans and
animals on crosswalks. Although 1369 such smart traffic
lights could be available in Vienna in the future, the service
provider has a limited budget for edge computing resources.
As a trivial example, consider three edge servers illustrated
in Fig. 1, none of which satisfying the availability require-
ment alone. The limited budget allows at most two replicas
of the video analytics to be deployed at these servers; how-
ever, the dependencies between the servers might nullify the
availability benefits of replication if the replicas are placed
indifferently. Specifically, S1 and S2 are powered by the
same electricity grid causing joint failures. Similarly, S1 and
S3 share the same network connection. In addition, edge
servers are configured to dispatch tasks to others (indicated
with arrows) when overloaded. This results in cascading
failures and further temporal dependencies. Note that, de-
pendency causes are not usually known in real systems;
therefore, we propose automatic extraction from past traces.

2.2 Edge Computing Failures

Two broad categories of spatiotemporal correlations be-
tween node failures are considered in literature [8]. In
multiplication, failures occur simultaneously in multiple
servers due to a common cause, whereas in propagation,
the failure in a server eventually triggers further failures
in others. In the edge computing context, examples of
dependencies that belong to the former category include:
a network failure affecting multiple servers in the same
physical/virtual network; a power outage affecting multiple
servers in the same grid; and multiple servers deployed in
hostile locations failing due to environmental interference.
Yet, cascading failures, which occur after a single failure and
later spread due to workload redistribution, belong to the
failure propagation category. Reattempting failed tasks often
amplifies such failures. These factors are not transparent to
the user and it is exhaustive to take measures for each.

Post failure recovery mechanisms such as re-execution or
checkpointing alone are not sufficient in the edge scenario
due to their high overhead and the limited computational
capacity of edge servers. Additionally, the unstructured, dy-
namic, and heterogeneous edge computing architecture hin-
ders approaches based on shared risk groups or availability
zones. Due to strict locality requirements, all admissible
candidates for replication may belong to a few such groups
or zones, which adds to inherent dependency. Another
major reason for edge service unavailability is link failures.

https://newsroom.magenta.at/2020/01/16/5g-anwendungen/
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Fig. 2. Main components and data flow in the proposed technique.

Communication at the edge is typically enabled via ad hoc
networks, which in combination with mobility, might result
in intermittent connectivity. Previous work on consistency in
edge computing [11] shows that substantial communication
is needed to keep the state consistent between multiple
copies. To this end, edge servers can communicate either
directly or through a central server. For applications with
strong consistency requirements, a link failure on the path
between two replicas would result in service unavailability.

2.3 Methodology Overview
In Fig. 2, we present a high-level overview of the main com-
ponents of our approach and data flows. In this architecture,
dependency learning (Sec. 4.2) is a one-time process that
occurs in a resource-rich environment such as the cloud.
It receives past failure traces (F ) and trains a DBN 〈G,Θ〉
based on these. Failure probability inference (Sec. 4.3 and
4.4), in turn, utilizes the DBN as well as the network topol-
ogy (T ) at runtime to compute the failure probability of a
candidate deployment (Pr(fΣ)). This component can either
be deployed on the cloud and provided as a programming
interface or run at the edge as part of the service provider
software (e.g., scheduler). The candidate deployments (∆)
to be evaluated by this module are continuously generated
by the resilience algorithms depending on currently avail-
able servers (S) and network conditions (T ). After several
trials, these algorithms return the optimized deployment
in terms of requirements of the service provider such as
maximum acceptable failure probability (p) or the number
of replicas (m). Resilience algorithms should run on an edge
server due to their interactive nature. Therefore, our design
goal for these algorithms is to achieve low computational
complexity. This is demonstrated both theoretically (Sec. 5)
and empirically (Sec. 7.2) in the rest of the paper. Further
notations used in this paper are defined in Table 1.

2.4 Practical Implementation
We make no assumption on the virtualization technology
and believe that the proposed scheduling algorithms will
be applicable to virtual machines as well as more light-
weight implementations such as containers or pods. Hence,

TABLE 1
Common notation and symbols used throughout the paper.

Symbol Definition
δ A deployment 〈c, s〉 of a service copy and an edge server
∆ Set of all deployments of a service, δ ∈ ∆
λ A link on the path between two deployments
Λ Set of all links on the path between two deployments
S Set of currently available edge servers
S∆ Set of edge servers that host a service, S∆ ⊆ S
T Network topology among the edge servers, T = 〈S,L〉
c A copy or replica of the service
p Maximum acceptable failure probability of a service
pmin Failure probability of an optimum deployment
m,n Number of copies and active copies for a service
u Edge server that is closest to the service users, u ∈ S
f ts Binary random event representing a server failure at time t
fδ Binary random event representing a deployment failure
f∆ Binary random event repr. joint failure of all deployments
fλ Binary random event representing a link failure
fΛ Binary random event representing a path failure
fΣ Binary random event representing an overall service failure
F Set of all f ts for all s ∈ S and for all t
G,Θ Structure graph and parameters of a DBN

we use the generic terms of task, copy, or replica. State-of-the-
art edge orchestration systems such as K3S and KubeEdge
are based on Kubernetes [12]. Failure probability inference
and resilience algorithm modules of DTFR in Fig. 2 are to
run on the Kubernetes master and to extend the scheduler
and replication controller modules. Dependency learning,
on the other hand, can be executed on a more resource-rich
server and the pre-trained model can be stored as a volume
at the master. To the best of our knowledge, the aforemen-
tioned systems do not extend the replication capabilities of
Kubernetes. DTFR requires support for dynamic number
of replicas and active-standby replication. In Kubernetes,
the former is possible via horizontal pod autoscaler and
latter via a readiness probe. Failure forecasts is a valuable
input to the scheduler and replication controller of any
edge computing service to make better-informed decisions
about resilience. While we utilize forecasting to evaluate
replication plans at deployment time, it can also be directly
employed at execution time to trigger proactive failure mit-
igation mechanisms. To this end, the inference module can
be recalled either periodically or when a failure is detected.

It should also be noted that, the proposed techniques for
edge service resilience are probabilistic in nature, thus they
are not to guarantee absolute availability for safety-critical
applications. They do, however, promise satisfactory QoS
under a limited budget for most prospective real-time edge
computing applications. As a reference, Open Data Center
Alliance defines in Standard Units of Measure for IaaS report
that highest category of cloud data centers (i.e., Platinum)
must offer 99.99% availability. The same monthly availabil-
ity level is also promised in Amazon EC2 SLA. According
to our evaluation, DTFR algorithms can achieve comparable
QoS levels despite highly unreliable edge resources.

3 PROBLEM DEFINITION

3.1 Node Failures
Services deployed at the edge have various resilience re-
quirements. These are often communicated through mini-
mum service level, number of nines, or maximum accept-
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able downtime. On the other hand, failure characteristics
of edge servers can be represented with mean time between
failures (MTBF) hazard rate, availability, etc. In an attempt to
standardize and simplify the terminology, we introduce the
notion of a deployment pair, δ = 〈c, s〉, and its failure, fδ , as
a binary random event. A deployment pair (deployment for
short in the remainder of the paper) consists of a copy of the
service (c) and an edge server (s) which hosts that copy.

We further define an edge service as a set of deploy-
ments, ∆. Each δ ∈ ∆ runs a copy of the service. Joint failure
probability, Pr(f∆), can be stated in different ways based
on the availability definition of the client. For instance, in
active-standby replication given in the left part of (1), the
service is assumed available unless all m deployments fail,
since a standby deployment takes over when the active one
fails. In load sharing replication, however, all deployments
are active and share the workload. As given in the right
part of (1), the service is available as long as at least n
deployments out of m are active. In other words, up to
k = m− n failed deployments are tolerated.

Pr(f∆) = Pr

(⋂
δ∈∆

fδ

)
, Pr(f∆) = Pr

 ⋃
D⊆∆
|D|=k+1

⋂
δ∈D

fδ

(1)

In this work, we assume single-component edge services
where all copies execute the same task, however, definitions
in (1) can be easily generalized to a multi-component case as
shown in (2). Here, K is the set of service components and
∆κ is the set of all deployments that run component κ. It
is also possible to define a custom JFP function where each
component has a different availability definition or some
components are noncritical and have no availability impact.

Pr(f∆) = Pr

( ⋃
κ∈K

f∆κ

)
, ∆κ = {〈c, s〉 ∈ ∆ | c← κ} (2)

3.2 Link Failures
The failure probability, Pr(fλ), of a link, λ, is defined as
its unavailability, that is, downtime divided by total time.
The end points of the Internet such as edge servers typically
communicate through a network path that can be altered
unpredictably due to failures or load balancing decisions.
Although the changes can be frequent especially in the
case of programmable networks, we assume that new paths
would have comparable length and hence failure probabil-
ity. Thus, we compute the failure probability of the initial
path between each pair of replicas, Λ, as the probability that
at least one link fails as given in (3). Then, we define the SFP
as the union of all node and link failures as shown in (4).

Pr(fΛ) = Pr

(⋃
λ∈Λ

fλ

)
= 1− Pr

(⋂
λ∈Λ

¬fλ

)
(3)

Pr(fΣ) = Pr
(
f∆ ∪

⋃
fΛ

)
(4)

3.3 Optimized Deployment
We believe, failure forecasting comes in useful for manage-
ment of edge resources in various stages. It can be used
(i) at design time to evaluate software models in terms of

resilience; (ii) at deployment time to compare replication
and deployment alternatives; or (iii) at execution time to
take measures (e.g., migrate, replicate etc.) before failures.
Among these possible use cases, we focus on optimizing the
failure resilience at service deployment as the second part
of the problem. Given a set of available edge servers, S, we
aim to minimize either SFP or number of deployments.

Optimization Problem 1 (OP1): Number of copies to be
deployed is predefined and objective function minimizes the
SFP of deployment set. First constraint in (5) states that each
deployment is between a service copy and a server, whereas
the second one ensures that the total number of copies is m.

minimize
∆

Pr(fΣ)

subject to ∀δ ∈ ∆(δ = 〈c, s〉 ∧ s ∈ S), |∆| = m.
(5)

Optimization Problem 2 (OP2): Maximum acceptable
failure probability, p, is predefined and objective function
minimizes deployment set cardinality (i.e., copy count).
Second constraint in (6) satisfies the resilience requirement.

minimize
∆

|∆|

subject to ∀δ ∈ ∆(δ = 〈c, s〉 ∧ s ∈ S), Pr(fΣ) ≤ p.
(6)

4 FAILURE MODEL

4.1 Joint Failure Probability
JFP is the probability that all copies of an edge service
are unavailable due to concurrent failures at the servers
in which they are hosted. Note that, this definition cor-
responds to the service interruption definition of active-
standby replication in (1). Techniques described in this
section can also be applied to load sharing, but we omit
this scenario for brevity. There exist efficient and accurate
algorithms in distributed systems literature to forecast avail-
ability or marginal failure probability (MFP) of a single
deployment, Pr(fδ). Some example approaches include use
of recent availability ratio [13], support vector machines
[14], and probabilistic graphical models [15]. We use the
retrospective unavailability of an edge server to estimate
its MFP. However, JFP is substantially harder to forecast
unless independence is assumed. A naive solution to the
JFP computation problem is to assume that the failure of a
deployment is independent of failures at other deployments.
In this case, it is sufficient to compute and store MFP of each
deployment resulting in O(|∆|) probabilities as shown in
(7). In contrast, one may assume that each deployment is
dependent to all others and compute JFP via chain rule as
in (8). In this case, O(2|∆|) probabilities must be computed.

Pr

(⋂
δ∈∆

fδ

)
=
∏
δ∈∆

Pr(fδ) (7)

Pr

(⋂
δ∈∆

fδ

)
=

|∆|∏
i=1

Pr

fδi
∣∣∣∣∣
i−1⋂
j=1

fδj

 (8)

Both of these extreme solutions, however, have substan-
tial shortcomings. The former, while being computation-
ally efficient, ignores valuable information about concur-
rent failures. The latter, on the other hand, has high time
and space complexity as well as sensitivity to noise from
coincidental correlations. Consequently, we make use of
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Fig. 3. Dynamic Bayesian network for the running example scenario.

probabilistic graphical models in order to model the most
significant conditional dependencies along with uncertainty
in a compact and efficient way. More specifically, we model
spatial and temporal failure dependencies via a dynamic
Bayesian network (DBN) and make inferences with DBN
via an algorithm based on variable elimination technique.

4.2 Dynamic Bayesian Networks
Among other probabilistic graphical models, we choose
DBN for our purpose mainly because of its capability to
represent temporal dependencies between events, unlike
regular Bayesian networks for example. This is crucial to
capture cascading failures, which are dependent but occur
at different times. DBN infers not only dependencies them-
selves but also the direction of causality because it incor-
porates temporal information [16]. Thus, it can distinguish
between causes and effects. Failure events are nonlinear, so
their dependency can be captured by DBN but not by linear
estimators such as Kalman filters [8]. Moreover, DBN hold
performance improvements with respect to hidden Markov
models in which the number of states grows exponentially.

A DBN is defined as the pair 〈G,Θ〉 for a set of random
variables R = {rt1, rt2, . . . , rtn}, where t ∈ N is the time
step. Here, G is a directed acyclic graph (DAG) with ver-
tices representing variables at different time steps and links
representing their dependencies. According to the indepen-
dence assumption in Bayesian networks, each variable rti
is directly dependent on its parents in G and independent
of its non-descendants given these parents. The second
element of the pair, Θ, is a set of probabilities for each
variable conditional to its parents. There exists a parameter
θ ∈ Θ for each possible combination of values that rti and
its parents can take, such that θ = Pr(rti | parents(rti)).

In our case, the variables for which DBN is defined, are
binary failure events of servers (i.e., R = {f t1, f t2, . . . , f tn}).
There may be multiple variables in DBN that correspond
to the same server but at different times. This way, DBN
can effectively represent spatial (btw. edge servers) and
temporal (btw. time steps) dependencies of edge computing
failures. Moreover, it can be queried to estimate the future
joint failure probability of certain servers. Let us illustrate
how failure dependencies in our video analytics scenario
(Fig. 1) are modeled. Fig. 3a is the simplified structure
of a corresponding DBN. Joint failures due to the shared
electricity or network result in dependent failure events
f1 − f2 and f1 − f3 at the same time step t. Direction is
trivial in concurrent dependencies. In addition, cascading
failures are represented with dependencies in consecutive
time steps (t− 1 and t). Furthermore, in Fig. 3b, we provide

the conditional probability table (CPT) for S1. As an example
interpretation from the CPT, failure probability of S1 at
time t given that S2 failed in the previous at t − 1 and
that S3 did not fail at t is Pr(f t1 | f t−1

2 ¬f t3) = 0.08.
In the proposed technique, both DBN structure and CPTs
are automatically trained from past failure traces. Traces
are ordered chronologically and clustered into fixed-length
time steps, such that overlapping failures are regarded as
concurrent. Failures in consecutive time steps, on the other
hand, are used to infer spatiotemporal dependencies. We
employ simulated annealing heuristic to search for DAGs
that represent dependencies accurately. Practical implemen-
tation details about DBN learning are given in Sec. 6.

4.3 Joint Probability Inference

Given a DBN model, 〈G,Θ〉, we are interested in inferring
the joint probability of certain events. More specifically, we
aim to compute the failure probability of the edge servers
that are to be allocated by a given service deployment ∆.
The computed value (i.e., JFP) in (9) is treated as the forecast.

Pr(f∆) = Pr

 ⋂
s∈S∆

fs

 , S∆ = {s ∈ S | 〈c, s〉 ∈ ∆} (9)

Independence assumption of Bayesian networks states
that a variable is conditionally independent of its non-
descendants, given its parents. This allows us to factorize
the joint distribution of all variables by conditioning each
variable only on its parents in the DBN. This is given in
(10) where Ps is the parent set of variable fs. Note that,
significantly fewer conditional variables are needed with
respect to (8), decreasing from O(|S|) to O(|Ps|).

Pr

(⋂
s∈S

fs

)
=
∏
s∈S

Pr

fs
∣∣∣∣∣ ⋂
γ∈Ps

fγ

 (10)

All these probabilities are already available in Θ. Hence,
one way of computing the JFP is to leave interested variables
(S∆) and marginalize out all others (S \S∆) by summing up
the probabilities for all possible combinations of them.

Pr(f∆) =
∑
S\S∆

∏
s∈S

Pr

fs
∣∣∣∣∣ ⋂
γ∈Ps

fγ

 (11)

In (11), we sum the probability over all 2|S\S∆| possible
instantiations of uninterested variables. The summation can
be computationally optimized in several ways. Below in-
troduced steps significantly reduce the time-complexity of
exact inference. Resulting performance suffices for the size
and complexity of DBNs that are learned from data in our
evaluation, as described in Sec. 6. However, for models with
greater number of variables (> 1000) and allowed parents
per variable (> 5), approximate inference algorithms can be
useful [17], including sampling techniques such as Monte-
Carlo, or variational inference algorithms such as mean field.

First, some of the variables in S\S∆ may be independent
of, thus have no contribution to the joint probability of
the variables in S∆. More specifically, we only need the
variables that are ancestors of at least one variable in S∆

according to the d-separation algorithm [18]. Hence, we build
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Algorithm 1: ANCESTRAL–GRAPH

Input DBN structure: G = 〈V,E〉; Deployment servers: S∆

Output Ancestral graph for S∆: A = 〈V ′, E′〉
1: V ′ ← ∅, E′ ← ∅ {A is initially a null graph}
2: Q← S∆ {Initialize the queue}
3: for all q ∈ Q do {While the queue is not empty}
4: P ← {p ∈ V | 〈p, q〉 ∈ E} {Parents of q in G}
5: Q← {Q ∪ P} \ {q} {Queue P and dequeue q}
6: V ′ ← V ′ ∪ {q} {q belongs A}
7: E′ ← E′ ∪{〈x, y〉 ∈ E | y = q} {Links to q belong A}
8: end for

a subgraph of the original DBN which consists of only
concerned variables (S∆) and their ancestors. Extraction of
this so-called ancestral graph is described in Alg. 1. Once
we obtain the set of ancestor nodes V ′, it can be safely
used instead of S in (11). Consider the DBN in Fig. 3a and
assume that we need to deploy a service with two copies, c1
and c2. Among other alternatives, let us evaluate the failure
resilience of deployment set ∆ = {〈c1, s1〉, 〈c2, s3〉}, so we
are interested in the servers S∆ = {s1, s3} and their JFP,
Pr(fs1fs3). From Alg. 1, the ancestral graph of S∆ contains
the variables f t−1

1 , f t−1
2 , f t1, and f t3. Hence, we can factorize

and marginalize the joint probability as follows.

Pr(fs1fs3) =
∑
ft−1
1

∑
ft−1
2

Pr(f t−1
1 f t−1

2 f t1f
t
3) = (12)

∑
ft−1
1

∑
ft−1
2

Pr(f t−1
1 ) Pr(f t−1

2 ) Pr(f t1 | f t−1
2 ) Pr(f t3 | f t−1

1 f t−1
2 )

As a second performance optimization, we implement
a variable elimination algorithm, which reduces the number
of summation steps via dynamic programming. Details and
time-complexity are discussed in the supplementary file.

4.4 Link Failure Probability

Contrary to node failures, we model link failures as in-
dependent random events. Independence assumption is
reasonable in this case since link failures are not as multi-
dimensional as node failures in terms of their variety,
multiplication, or propagation. To support this claim, we
analyzed the cross-correlation of link failures from two
real-world systems. The first data set is collected from the
computing system MPP2 located at the Pacific Northwest
National Laboratory [19]. It contains 121 link and 5591 node
failures between 2003 and 2008. Our analysis of link failures
resulted in an unnormalized cross-correlation function val-
ues in the range [0, 0.15] with a median of 0.03, whereas
node failures are more significantly correlated up to 0.83
with a median of 0.26. We repeated our analysis on another
data set by Telecom ParisTech and Cisco, collected from a
system with a typical topology of a content service provider
[20]. Similar to the first analysis, we detected no correlation
between the 131 link failures that occurred in January 2018.

For simpler notation, we consider an edge network with
a tree topology and the failure of a single link on the
path results in disconnection. However, formulations in this
section can be easily generalized to any network topology.
According to the MEC architecture defined by ETSI, the

Algorithm 2: OPT–RT
Input Available servers: S; Initial copy: c; Number of active

copies to deploy: n ≤ m; Network topology graph:
T 〈S,L〉; Most proximate server to the user: u ∈ S

Output Partial deployment set: ∆
1: O ← [ ][ ] {Initially array O is empty}
2: i← 0 {Next index of O}
3: for all s ∈ S do {For each candidate server}
4: d← DISTANCE(T, u, s) {Shortest path length to u}
5: O[i][0]← s, O[i][1]← d, i← i+ 1
6: end for
7: O ← SORT(O, 1) {Sort O by O[ ][1], i.e., distance}
8: ∆← ∅ {Initially deployment set is empty}
9: for i = 0 to n− 1 do {First n items in O}

10: c′ ← CLONE(c) {Create another copy of c}
11: ∆← ∆ ∪ {〈c′, O[i][0]〉} {Add a new deployment}
12: end for

edge orchestrator, which is responsible for the service de-
ployment, is aware of the network topology between the
edge servers. Thus, we are able to compute the LFP of an
edge service, given the network paths between the deployed
nodes and failure probability of each link on these paths. We
compute the failure probability of a path, λ in (13). Finally,
overall service failure probability (SFP) is defined in (14) as
the probability that the nodes jointly fail (JFP) or at least one
path fails (LFP). LFP can be computed in constant time as it
is independent of the number of candidate edge servers.

Pr (fΛ) = 1−
∏
λ∈Λ

Pr(¬fλ) (13)

Pr(fΣ) = 1− Pr(¬f∆)
∏
Λ

Pr(¬fΛ) (14)

5 RESILIENT SERVICE DEPLOYMENT

5.1 Stage 1: Topology Awareness
First stage of the resilient service deployment given in Alg. 2
deploys the active copies at edge servers with minimum
network delay. This guarantees that during the failure-
free execution, lowest possible response time is achieved.
We do not deploy standby replicas in this stage due to
the following reasons. First, this may not be the optimal
in terms of joint failures due to the high possibility of
dependency between edge servers in proximity. This would
also quickly consume the limited resources at the areas with
high number of users. Finally, since failures are relatively
rare, higher response times can be tolerated in short failure
periods of active replicas. OPT–RT starts with an empty
two-dimensional array (line 1). Then, it iterates over all
servers and computes their distance to the user (line 4). The
distance and server is stored in an array (line 5), which is
then sorted by distance (line 7). A new copy of is deployed
at the top n servers in terms of network distance (lines 9-
12). The time-complexity of OPT–RT is O(N logN) due to
sorting, where N = |S| is the number of available servers.

5.2 Stage 2: Dependency Awareness
For the second stage, we introduce two variants that cor-
respond to OP1 and OP2 from Sec. 3.3. Both algorithms
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Algorithm 3: OPT–FP
Input Available servers: S; Initial copy: c; Number of copies

to deploy: m; Partial deployment set: ∆
Output Optimum deployment set: ∆; JFP of that set: pmin

1: i← m− |∆| {Number of copies yet to be deployed}
2: C ← {C ⊆ S \ S∆ | |C| = i} {i-subsets of candidates}
3: pmin ← +∞
4: for all C ∈ C do {For each candidate set}
5: p← Pr(fC∪S∆

) {Compute as in (14)}
6: if p < pmin then {If better than current best}
7: pmin ← p {Update minimum p}
8: C ′ ← C {Update best candidates set}
9: end if

10: end for
11: for all s ∈ C ′ do {For each server in C ′}
12: c′ ← CLONE(c) {Create another copy of c}
13: ∆← ∆ ∪ {〈c′, s〉} {Add a new deployment}
14: end for

Algorithm 4: OPT–SIZE
Input Available servers: S ⊆ S; Initial copy: c; Acceptable

failure probability: p; Partial deployment set: ∆
Output Optimum deployment set: ∆

1: for m = 1 to |S| do {Test increasing ∆ sizes}
2: {∆′, pmin} ← OPT–FP(S, c,m,∆)

{Find the optimum deployment of size m}
3: if pmin ≤ p then {If JFP is acceptable}
4: ∆← ∆′

5: break {Stop the search}
6: end if
7: end for

start from the partial deployment set computed by OPT–RT
and deploy remaining copies based on SFP. The first one,
described in Alg. 3, finds the deployment set of given
cardinality m with the lowest SFP. This is useful when the
service provider has a fixed budget and expect the highest
possible resilience under current state of the edge servers.
OPT–FP iterates over all i-subsets of available servers in
order to identify the combination that yields the lowest JFP
(lines 3–9). Then, a new copy is deployed on every server
in this identified combination (lines 11–14). Considering
|S| ≥ m, there exists O(2N ) subsets and hence calls to
Pr(fΣ) calculation, which itself has the time-complexity of
O(N 2M ). Thus, the time-complexity of the algorithm is
O(N 2N+M ), where M is the length of the longest factor
(in terms of number of variables) in the JFP inference step.

The second algorithm, OPT–SIZE in Alg. 4 takes max-
imum acceptable JFP (p) as input instead of deployment
size. Starting from m = 1 and incrementing m at each
iteration (line 1), it calls OPT–FP, which in turn returns
the optimum deployment set and corresponding JFP for the
given m (line 2). When a deployment set that satisfies p is
found, search is stopped and the algorithm outputs the set
(lines 3–5). Consequently, the outputted deployment set is
of not only minimum size but also minimum JFP given its
size. If it is not possible to find a deployment that satisfy
the requirement, the one with the highest JFP and size is
returned. In the worst case, N calls to OPT–FP are made,
resulting in an overall time-complexity of O(N2 2N+M ).

6 EXPERIMENTAL SETUP

We evaluate SFP forecaster and DTFR algorithms through a
larger-scale and more realistic version of our video analytics
scenario. Here, service providers with certain resilience re-
quirements aim to minimize over-provisioning of replicas
to reduce costs. To that end, we implement the architec-
ture shown in Fig. 2. DTFR and baseline algorithms are
implemented in Java (JDK 1.8). The main program executes
them sequentially by generating a service request at each
iteration. We generate 10,000 service requests at uniform
time intervals. The availability definition of services belongs
to categories described in Sec. 3.1, namely load sharing
and active-standby, whereas the number of copies is chosen
uniformly at random from the range [1, 5]. Then, gener-
ated tasks are deployed on a subset of currently available
servers via proposed and baseline algorithms. Deployments
outputted by each algorithm are evaluated with the failure
traces that correspond to the task running time. Evaluation
is repeated for 10 disjoints sets of 100 randomly selected
servers from each data set. For each set, failures in the first
half of the total time span are reserved for DBN learning and
the rest for task scheduling. Data communication between
the modules is implemented through shared variables.

6.1 Network Topology

An undirected network topology graph is generated with
Barabási–Albert scale-free network generation model [21].
This model is widely used to represent human-made net-
works such as the Internet including edge topologies [22],
[23], mainly due to two characteristics borrowed from real
networks: incremental growth and preferential node con-
nectivity. When new nodes are being added, a probability
function for edge generation ensures that new nodes tend
to link to the more connected nodes, i.e., hubs. Generated
topology contains 1000 nodes placed on a 1000×1000 coor-
dinate plane, 2994 edges, and a heavy-tailed distribution
(Pareto with shape 1.2) of network latency. We consider
fixed locations for edge resources such as base stations.
Network delay is measured from the edge node that is
closest to the user at the time of deployment.

We collected real link failure data on an edge computing
testbed for the aforementioned InTraSafEd 5G project. The
data set includes round-trip time (RTT) measurements of
25000 messages sent periodically from a Galaxy S10 5G
smartphone to a nearby Kubernetes cluster consisting of
12 Raspberry Pi 3B+ single-board computers (see supple-
mentary file) over a period of 4 days. The smartphone was
connected to either 5G or 4G networks during the data
collection. The messages were transmitted using the MQTT
protocol, which is the industry standard for IoT messaging,
using exactly once (highest) QoS level. RTT values greater
than µ+2σ (≈ 481ms) were assumed link failures (≈ 2.3%).

6.2 Failure Traces

To the best of our knowledge, there does not exist an
edge computing reliability data set that is available to the
research community at present. This is because of not only
the novelty of the technology, but also the obstacles to
making workload traces of commercial systems publicly
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Fig. 4. Edge computing implementations and corresponding data sets.

available, such as competitive concerns, privacy obligations,
and hardness of data anonymization [24]. Consequently and
as with the previous work in system reliability literature
[25], [26], [27], we take failure traces and infrastructure
information from real-world distributed systems and syn-
thetically generate the workload. To generalize our results,
failure traces are collected from three distributed hardware
systems that represent different deployment strategies that
are proposed in the edge computing literature as depicted
in Fig. 4. Here, the mean availability of servers reflects
the values in corresponding data sets, whereas the ordinal
values of computing power (shown as server icons) and
average RTT are evaluated based on literature [1], [28], [29].

The most widely distributed case is when edge com-
puting tasks are executed directly on client devices (e.g.,
desktop PCs, tablets, smartphones, etc.) [30], [31]. It is
characterized by the lowest possible latency but also sig-
nificantly high churn, low reliability, and limited comput-
ing power. The DEVICE data set [32] that contains failure
traces from 226,208 personal computers between April 1,
2007 and January 1, 2009 is used to represent this deploy-
ment. The second alternative is the cloudlets located on-
site on business premises [33]. This form of deployment
exhibits relatively higher reliability but still lacks cloud-
level extensive support systems. We utilize the SITE data
set [34], which contains 2,081 supernodes pinged in 30-
minute intervals between September 18 to October 4, 2005.
Supernodes are identified based on reachability and spare
bandwidth and they represent the reliability middle ground
between implementing edge computing on regular client
devices and dedicated servers. Finally, edge virtualization
infrastructure can be deployed on the networking hardware
such as routers, switches, or proxy servers, similar to fog
computing [35]. This would result in the highest level of
reliability and computation power at the cost of increased
RTT due to distance. Local Domain Name Servers (LDNS)
data set [36] contains ping probes initiated to servers at ex-
ponential intervals with a mean of 1 hour, between March 17
to 24, 2004. In this data set, 62,201 LDNS servers substitute
for edge servers deployed on networking hardware.

These data sets also include the workload traces; how-
ever, we exclude this part of the data in our experiments
because the tasks are not typical edge computing services.
We rather focus on the hardware characteristics as they run
on a infrastructure similar to the prospective edge comput-

ing deployments described above. Availability distribution
of data sets are given in the supplementary file.

6.3 DBN Learning
For learning the DBN structure, we utilize Banjo frame-
work2 by Duke University. Finding the optimum structure
that best describes the data is an NP-complete problem
[37]. Hence, structure learners almost always include heuris-
tic and approximation steps. Banjo searches for candidate
graphs via simulated annealing, a Monte Carlo metaheuris-
tic. We configured Banjo to allow Markov lags of 0 and 1,
which means only the dependencies between failures in the
same or consecutive time steps are captured.

Banjo does not support parameter learning (i.e., CPTs),
so we implement maximum likelihood estimation (MLE)
to obtain each conditional probability. MLE is a standard
technique for parameter learning and it assumes that the
probability is equal to the number of historical occurrence
of all events (interested and given) divided by that of only
given events. Continuing from the previous example in
Fig. 3a, second row in Fig. 3b is estimated via MLE as shown
in (15). Here, σ is a function that maps logical true to integer
1 and false to 0, whereas f t1 is the interested event.

Pr(f t1 | f t−1
2 ,¬f t3) =

∑T
t=2 σ(f t1 ∧ f t−1

2 ∧ ¬f t3)∑T
t=2 σ(f t−1

2 ∧ ¬f t3)
(15)

6.4 Baseline Algorithms
Random (RAND): Each copy is placed on a server

chosen uniformly at random. System time is the seed.
Prior-based (PRIOR): Availability of a server is assumed

to remain the same as its recent past and tasks are scheduled
to the servers with highest past availability. This technique
is applied in [13] to improve fault tolerance of Apache Storm
applications. In our experiments, availability in the last five
hours yielded the best accuracy for this baseline algorithm.

TTF-based (TTF): Support Vector Machine (SVM) re-
gression is applied in [14] to forecast future time to failure
(TTF) values. We implement sequential minimal optimiza-
tion [38] algorithm for SVM regression. Tasks are scheduled
to the servers with the longest remaining TTF. Sample data
size for SVM is 50 in our experiments.

Dependency-Aware (DAFR): The algorithm, introduced
in [10], utilizes the same JFP calculation as DTFR but it is
unaware of the topology, response time, and link failures.

Proximity-based (OPT–RT): The first stage of DTFR is
executed for both active and standby replicas, thus copies
are placed on the edge servers closest to the users.

Availability-based (OPT–FP): This is the DTFR algo-
rithm without the first stage, so that replicas are placed
solely based on SFP without considering their proximity.

7 NUMERICAL RESULTS AND DISCUSSION

7.1 Availability
Fig. 5 shows mean downtime percentages of 10,000 services
that are deployed by each algorithm using different traces.
A general trend is that availability decreases as the task

2 https://users.cs.duke.edu/∼amink/software/banjo/

https://users.cs.duke.edu/~amink/software/banjo/
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length increases. This is expected since none of the algo-
rithms re-evaluate the deployments or propose migrations
after the initial decision. Additionally, services have higher
downtime as the availability of the resources decreases (i.e.,
LDNS > SITE > DEVICE). DTFR avoids any downtime
with LDNS regardless the task length and achieves a very
high availability of 99.8% in the worst case with SITE.
DAFR and OPT–FP achieve 100% availability for both
data sets as they exploit the same JFP values as DTFR
but their sole objective is to avoid unavailability. With
highly unreliable DEVICE resources, none of the algorithms
achieve zero downtime and the availability of DTFR ranges
between 98.2% and 99.3% Forecasting-based approach TTF
performs comparably well for short-term tasks and reli-
able resources; however, it gets increasingly inaccurate with
longer ones. We conclude that dependency and link failures
are critical in node selection especially for long-term tasks.

Fig. 6, on the other hand, presents the redundancy loss
rates. We define redundancy loss as the case that at least one
deployment fails but the service is still available according
to its availability definition (e.g., maximum tolerable fail-
ures), which is described in detail in Sec. 3.1. The results
demonstrate that considerable amount of failures do occur
but service resilience is preserved by DTFR, DAFR and
OPT–FP mechanisms. Interestingly, TTF incurs signifi-
cantly less failures than DTFR, which shows its effective-
ness in detecting individually most reliable servers; how-
ever, it suffers the same or higher downtime as shown by
Fig. 5. Proposed DTFR mechanism, instead, achieves failure
resilience by exploiting the co-occurrence of failures, which
justifies our claim that consideration of failure dependency
makes substantial contribution to service availability.

7.2 Network Delay and Overhead
Different from other distributed systems in general, schedul-
ing for edge computing infrastructure is highly dependent
to the proximity of chosen servers to the user. Thus, failure
resilience has to be co-optimized with proximity in order
to achieve acceptable response times. In Fig. 7 (left), we
present the average end-to-end delay between the user and
the closest failure-free deployment. Downtime periods are
excluded to provide a fair comparison of all baselines in
terms of network delay. Network delay of all task lengths
are aggregated because the results are unaffected by length.
Higher average delays with DEVICE are due to the higher
number of nodes and hence larger network topology.
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Fig. 7. Mean network delay and computational overhead results.

OPT–RT, which chooses the most proximate servers,
achieves the minimum delay with all data sets. However,
as our previous results showed, it also suffers the highest
downtime, which makes it infeasible for edge services. A
close competitor is DTFR with only 1.0 ms of additional
delay with LDNS, 8.2 ms with SITE, and 7.3 ms with
DEVICE, despite maintaining very high failure resilience at
the same time. The baselines with the highest availability
performance, namely DAFR and OPT–FP, fail to achieve
proximate deployments and incur between 26.7 and 34.7 ms
additional delay with respect to OPT–RT. Our results show
that only DTFR is able to fulfill both availability and net-
work delay requirements of edge services simultaneously.

Responsiveness of edge services is also sensitive to their
scheduling time, especially when they are short-lived. In
Fig. 7 (right), we present a comparison of the overheads,
which corresponds to the inference time in learning-based
algorithms (i.e., DTFR, DAFR, OPT-FP, and TTF). Experi-
mental results regarding the effect of training time to the
DBN accuracy are provided in the supplementary file. DTFR
overhead remains in the range [0.5, 1.6] ms, which is negli-
gible in comparison to total network delay. This is also the
case for the simpler baselines RAND and PRIOR as well as
OPT-RT which is shown to have linear time-complexity in
Sec. 5.1. OPT-FP, which corresponds to stage 2 of DTFR, has
2x to 18x higher overhead than the full two-stage version.
The reason is that stage 1, which has linear time complexity,
greatly reduces the search space for stage 2. Since it already
deploys active replicas, N in stage 2 gets considerably small
(≤ 10). The same applies to DAFR too. TTF, however, does
not scale well with the number of nodes as it has low
overhead (1 to 2 ms) with small-scale data sets but extremely
high (197.5 ms) with DEVICE.
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7.3 Failures

Although the mean availability percentages show an overall
picture, a practical concern for service and infrastructure
providers alike is the frequency of contract violations caused
by failures. Thus, we present the number of contract viola-
tions incurred by each algorithm in Fig. 8. We enforce a strict
availability requirement of 99.9% in these experiments. Our
first observation is about TTF, which achieves relatively
low downtime but incurs high number of individual vio-
lations as all three figures show. For the tasks longer than
five hours, contract violations explode, which is particularly
evident in Fig. 8a. In the same figure, we also observe that
the proposed DTFR algorithm and its variant OPT–FP
outperform DAFR. We assume the difference is due to
the network failures, which are typically shorter-lived than
node failures, hence do not affect the average downtime
significantly, but cause violations nevertheless.

Above assumption is confirmed by our second set of
results, which show the number of contact violations caused
by the network failures. It is clear in Fig. 9a that link failure-
aware algorithms OPT–FP and DTFR incur fewer network
failures. However, network failure numbers are closer to
other baselines in Fig. 9b and nearly the same in Fig. 9c. This
is due to fewer available servers, hence fewer options for re-
silient deployment. Consequently, nodes with higher JFP are
preferred despite relatively higher LFP. Overall, OPT–RT
incurs the fewest network failures. Although, it does not
consider link failures, it chooses the servers that are closest
to the user, which are consequently close to each other as
well, reducing the hop count and LFP. Since link failures are
less frequent than node failures, this does not translate to
lower downtime or fewer contact violations for OPT–RT.
In contrast, high number of network failures in the case of
DAFR are compensated by node failure avoidance, unless
the nodes are extremely reliable (e.g., LDNS).

7.4 Cost

Finally, we conduct several experiments with variable num-
ber of copies using the dynamic variant of DTFR with the
OPT–SIZE algorithm. In Fig. 10a and 10b, the number of
deployed copies and percentage downtime are reported
with various values of p for SITE and DEVICE traces.
To illustrate the benefits, proposed algorithm is compared
to the best performing static baseline TTF, configured to
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Fig. 10. The trade-off between downtime and number of copies.

deploy two copies of each service, which corresponds to
20,000 deployments. Task length is chosen as two hours in
these experiments. As maximum acceptable failure proba-
bility (p) increases, proposed algorithm manages to satisfy
the requirement with fewer and fewer copies but services
experience an adverse impact on downtime. TTF suffers
around 1% downtime irrespective of p in both cases. In 300
different values of p evaluated for three data sets (not all are
reported for brevity), there does not exist a single case that
DTFR suffers higher downtime with the same number of
copies as the baselines or that baselines achieve the same
downtime with less copies. Hence, it is a nondominated
solution as far as our results are concerned. Furthermore,
in certain ranges of p (e.g., roughly [0.01, 0.04] in Fig. 10a
and [0.02, 0.11] in Fig. 10b), it is Pareto dominant, that is,
proposed algorithm achieves higher availability with fewer
copies. We omit the results for the LDNS data set with more
reliable servers, because DTFR achieves 0% downtime with
one or two copies regardless the value of p. Thus, the trade-
off between cost and availability does not exist with LDNS.

8 RELATED WORK

Failure resilience is a well studied topic within the con-
text of cloud computing. Widely used strategies can be
grouped under checkpointing [39], [40], [41], re-execution
[40], [42], and replication [41], [42], [43]. High overhead and
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long re-activation time makes first and second groups of
strategies infeasible when real-time computing is required
[44]. Replication-based approaches, on the other hand, do
not make a distinction between availability levels or failure
probabilities of different nodes, and rightly so because the
availability levels of servers within a cloud data center are
not noticeably different. One of the few exceptions is [44],
where so-called deteriorating physical machines are identi-
fied and proactive measures (e.g., migration, rescheduling)
are taken. However, failure prediction is limited to CPU
temperature forecasting against overheating. Similarly, in
[45], an analytical model is proposed to estimate the relia-
bility of subscribers in publish–subscribe systems. Interested
reader may refer to the recent survey by Welsh and Benkhe-
lifa [46] for details about resilience in the cloud context.

Although essential for its success, resilience in edge com-
puting is an open issue [7]. An early discussion of reliability
challenges in fog computing is presented in [47]; however,
few attempts are made to address these challenges. Aral
and Brandić introduce a technique that exploits causal rela-
tionships between different types of failures and channel all
QoS related parameters through virtual machine availability
[15]. Nebula [48], an edge-based computation and storage
architecture, handles fault tolerance of compute nodes via
re-execution. Although data is replicated, availability is not
a factor in site selection. Cloud visitation platform [49],
which copes with the hardware heterogeneity problem in
a federated cloud and fog setting via hardware awareness,
solves failure resilience only at a local level. When a server
fails, deployed applications are migrated to another one,
possibly in a different node. Cardellini et al. [13] extends the
well known distributed stream processor, Apache Storm, by
adding QoS awareness capability. Here, recent availability of
nodes is used instead of predicting future values. FogStore
[50], a distributed data store, handles replica and consis-
tency management. As only data blocks are replicated, the
focus of this work is on read and write latency. A recovery
scheme for edge computing failures is proposed in [51];
however, only the failures that are caused by overloaded
resources are considered. Traffic data is monitored to detect
overloaded nodes and their load is shared with others.
Odin [52], is a practical application of fault tolerance for
distributed servers in CDNs via backups. A checkpointing
mechanism for stateful fog computing that saves message
and function call records is proposed in [53]. This work
focuses on failure recovery rather than avoidance.

Almost all studies above either ignore network failure
resilience or reduce it to the individual connectivity so
that it can be embedded in node availability. Although
this is acceptable for cloud resilience, where data center
networks are reliable; specific consideration of link failures
is imperative for edge due to the utilization of ad hoc
public networks. Network reliability and resilience are well
studied within the telecommunication field [54]. The most
widely employed mechanisms including automatic protec-
tion switching [55], pre-configured cycle protection [56] and
path restoration [57] are not applicable to our scenario
since the service provider has no control over the network
infrastructure, and can only optimize edge server selection.
Ride [58] is an SDN middleware for resilient edge networks,
which suffers the same problem as it relies on rerouting.

9 CONCLUSION

In this work, we propose a failure resilience mechanism for
edge computing services that is dependency- and network-
aware. Dependency awareness ensures that deployed copies
are unlikely to fail concurrently. This not only increases
overall service availability but also decreases the number of
replicas or utilizes less reliable servers. Network-awareness,
on the other hand, decreases both end-to-end network de-
lay and probability of link failures. Extensive evaluation
with real-world failure traces demonstrate the superiority
of the algorithms against the state-of-the-art in terms of
availability, number of failures, network delay, and cost.
This work is a step towards realizing promised benefits of
edge computing paradigm by offering a practical solution to
one of the major obstacles to its adoption: failure resilience.
Many applications, which cannot be included to the cloud
ecosystem due to their network delay constraints, would be
viable for an edge–cloud or pure edge solution provided
that sufficient level of failure resilience is achievable. We
demonstrate that DTFR techniques proposed in this paper
can achieve similar availability levels to cloud, in the pres-
ence of low-latency yet failure-prone edge servers.
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1 VARIABLE ELIMINATION

A S THE second performance optimization to the joint
probability inference, we implement well-known vari-

able elimination algorithm, which reduces the number of
summation steps via dynamic programming. While the
formal definition of the algorithm is given elsewhere [1],
the main idea behind is to move probabilities out of certain
summations. This can be safely done when the index vari-
able of the summation does not appear in the conditional
probability. Continuing the example from the main docu-
ment given in (1), we can move the probability Pr(f t−1

1 )
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However, different orders of parameter elimination are
possible and significantly affect the number of computation
steps (but not the outcome). Since finding the optimum
ordering is an NP-complete problem, various heuristics are
used in practice [1]. Due to its simplicity and being one
of the four heuristics that perform well in practice [2], we
resort to Min-neighbors heuristic which eliminates variables
in ascending order of dependents. For example, eliminating
f t−1
1 (one dependent) before f t−1

2 (two dependents) would
result in following equation with fewer summations.

Pr(fs1fs3) =
∑
ft−1
2

Pr(f t−1
2 ) Pr(f t

1 | f t−1
2 )

∑
ft−1
1

Pr(f t−1
1 ) Pr(f t

3 | f t−1
1 f t−1

2 )
(3)

Overall, time-complexity of exact inference is reduced
from O(2|S|) to O(|V ′| 2M ) where M is the maximum
number of variables in a summation term.
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Fig. 1. Distribution of servers to availability levels.

Fig. 2. Example network topology generated by Barabási–Albert model.

2 EXPERIMENTAL SETUP

Availability distribution of the servers in each failure traces
data set is given in Fig. 1. It shows that most LDNS nodes are
highly available, most DEVICE nodes are unavailable, and
SITE nodes are more evenly distributed to the availability
levels. In experiments with each of these traces, the nodes
are mapped to edge computing servers. The network topol-
ogy between the edge servers are generated via Barabási–
Albert model. An example network that is generated this
way with 100 nodes is given in Fig. 2.
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Fig. 3. Prospective Geographical Distribution of Smart Traffic Lights in
Vienna Urban Area [3] in the Scope of the InTraSafEd 5G Project.
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Fig. 4. Physical Architecture of the Experimental Setup.

Fig. 5. Kubernetes Level Architecture of the Experimental Setup.

As the use case scenario discussed in this work, In-
TraSafEd 5G project [4] by Vienna University of Technology,
Magenta Telekom, and Swarco aims to improve traffic safety
with video analytics at the edge. Fig. 3 illustrates the geo-
graphical distribution of the envisioned 1,369 smart traffic
lights, which will run the video analytics. The network
failure traces used in the experiments are also collected
from the testbed of this project. Figure 4 shows the physical
architecture including 12 Raspberry Pi 3B+ separated into
3 stackable cases, each containing 1 master and 3 worker
nodes. Each RPi is equipped with 1 GB RAM memory and a
Quad-Core ARM processor running at 1.4 GHz. All RPis are
connected to the network with Netgear 24-Port 10-Gigabit
Switch and an Ethernet router. Since the Kubernetes cluster
is based on master-worker architecture, Figure 5 illustrates
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Fig. 6. DBN learning performance over time.

the setup in which every cluster consists of 1 master and 3
worker nodes.

3 DBN TRAINING PERFORMANCE

We run several experiments to investigate the effect of train-
ing time to the DBN accuracy. Network accuracy is defined
as the extent that a network represents data, and measured
by likelihood-equivalence Bayesian Dirichlet (BDe) metric
[5]. We run the structure learning algorithm on 7 threads
for 32 hours on a computer with 8-core 2.60 GHz CPU
and 8 GB of memory and collected statistics. As Fig. 6
demonstrates, number of explored networks grow at a near-
linear rate, whereas BDe score improves quite slowly and
with a decreasing rate. 6.4-fold increase in network size
results in only 2.9% higher score. The results here are from
a DBN training on the 750 randomly chosen servers of the
DEVICE data set, however experiments with others, which
are omitted for brevity, yield almost identical results. Based
on this analysis, we resolve that training time in the order
of minutes is sufficient for relatively small DBNs (≤ 1000
variables). In the rest of evaluation, we used DBNs that are
trained for 10 minutes which corresponds to 300 Million
explored networks. Parameter learning time, on the other
hand, is in the order of seconds and negligible compared to
structure learning time.
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