Chapter 14
Simulators and Emulators for Edge Computing

Atakan Aral’, Vincenzo De Maio’

In this chapter, we perform a study of the existing tools for the evaluation of Fog/Edge
infrastructures. First, we analyze the state-of-the-art in the simulation of Fog/Edge
infrastructures and determine the main challenges in simulation and modeling such
infrastructures. Then, we use a scientific methodology to identify the most important
simulation and emulation tools, identifying their main characteristics, and define a
classification. Each tool is then described in detail, and compared with the others.
Finally, we conclude the chapter with a discussion about future research directions
in the area.

14.1 Introduction

Modeling and simulation of Cloud computing infrastructures have attracted signifi-
cant interest in the distributed computing research community. The reason for this
has to be found not only in the commercial interest and widespread diffusion of such
infrastructures but also in the fact that testing and validation of resource manage-
ment strategies for Cloud computing is very challenging for researchers. This is due
to three main factors: (1) the use of commercial infrastructures, such as Amazon,
Azure or Google Cloud, or private experimental testbeds, affects the reproducibility
of experiments; (2) some measurements might not be available on commercial infras-
tructures, due to privacy issues, and (3) deployment and management of a real-world
Cloud infrastructure to perform experiments is either costly or time demanding. The
use of simulation and emulation tools for Cloud infrastructures allows testing of pro-
visioning and resource management strategies before deploying them on a real Cloud
infrastructure, minimizing risks for researchers and Cloud providers. For these rea-
sons, the development of accurate simulation and emulation tools is of paramount
importance for the advancement of research in this field.

Considering the recent affirmation of Fog/Edge computing, modeling and sim-
ulation of Fog/Edge computational resources become even more complex. This is
because in comparison with Cloud computing, the application areas of Fog/Edge
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computing vary by the extent of (1) geographical distribution, (2) scale, (3) hetero-
geneity, (4) processing type (batch or near real-time), (5) mobility, and (6) the inter-
play between the Edge, the Fog, and the Cloud [1]. These challenges are described
in the following sections.

Geographical distribution
While Cloud data centers are distributed around the globe, and often very far from
the source of the data, Fog/Edge nodes are deployed in close proximity to the data
sources. This geographical proximity to the data sources has effects on latency and
the time required for data transfer and processing, which has to be considered in the
modeling of Fog/Edge nodes.

Scale

Due to the higher number of devices that can be present in a Fog/Edge infrastructures
(e.g. Cloud data centers, Fog micro data centers, Edge devices, Mobile devices, and
IoT devices), and the consequently larger scale of systems to be modeled, there is
the need for providing models and simulators/emulators that can deal with the greater
scale of such systems. Another issue in this sense is related to the evaluation: while
there is a plethora of real-world datasets for the execution of Cloud applications, at
the moment we can notice a lack of real-world data and difficulty of measurements
for systems of such scale.

Heterogeneity

While Cloud infrastructures rely on centralized data centers and relatively homoge-
neous commodity hardware, Fog/Edge infrastructures move computation closer to
the source of data, relying on heterogeneous computing facilities (e.g. mobile de-
vices, [oT devices, and micro data centers). Moreover, some of these computing
facilities are not designed to perform the processing required by typical Fog/Edge
applications, demanding for different modeling approaches, more advanced than the
one used for typical computing facilities.

Processing type

Typical Fog/Edge applications range from batch processing applications to near real-
time applications. Each of these applications has different objectives and character-
istics, requiring different modeling strategies. For this reason, the simulation and the
modeling of Fog/Edge application should provide ways to model a wide range of
applications.

Mobility

Modeling the mobility of mobile computing devices becomes of paramount impor-
tance in the context of Fog/Edge applications. In fact, many works such as [2, 3],
investigate the benefits of offloading mobile application to Fog/Edge infrastructure.
In addition, mobile devices can also be seen as Edge devices, due to their computa-
tional capabilities [4]. In order to accurately model Fog/Edge infrastructures, then,
it is necessary to provide accurate modeling of different mobility patterns, ranging
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Figure 14.1 Fog and Edge Computing Architecture.

from pedestrian to vehicular mobility, and the influence of mobility over computa-
tions and network communications.

The interplay between Edge, Fog, and Cloud

According to [5], Fog/Edge computing is not supposed to replace Cloud computing,
but mostly to interoperate with it: for example, large-scale batch computation could
be executed on the Cloud, while near real-time applications could perform low la-
tency data processing on the Fog/Edge layers (as demonstrated in Figure 14.1). To
this end, there is the need to model the different types of processing at different lay-
ers of the infrastructure, as well as orchestration and network connections available
at different layers.

Such challenges cannot be addressed by typical Cloud simulators, and require
specifically tailored solutions for simulating such infrastructures. To the best of our
knowledge, there exists only a single literature survey on simulating fog and edge
computing [1]. Our work extends this study in the following ways:

e  We provide a detailed classification of the simulators, identifying six key criteria
regarding the modeling capability. Among these, only mobility is considered in
previous work [1];

e  We widen the scope of the reviewed simulators/emulators by considering newer
tools. The total number of tools increased from seven to eleven. Particularly,
FogExplorer, YAFS, RECAP, and Sleipnir simulators, as well as Cloud4loT em-
ulator, are missing in previous work. On the other hand, we exclude IOTSim [6]
because it models IoT applications that are hosted on centralized Cloud and not
in Fog/Edge infrastructures;

e  We explicitly describe the research methodology of our systematic literature
review and classification;
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e  We redraw the high-level architecture diagrams of the simulators and emulators
(where available) in a uniform format for quick comparison.

The rest of the chapter is structured as follows. In section 14.2, we introduce our
proposed classification and the methodology behind it. Then we proceed to describe
existing solutions for deterministic simulators (section 14.3), stochastic simulators
(section 14.4), and emulators (section 14.5). Finally, we compare the simulators,
discuss future research directions, and draw conclusions in section 14.6.

14.2 Classification of Simulators

14.2.1 Research Methodology

A systematic literature review follows precisely defined steps and reduces bias. It
also increases the reproducibility of the results. In this section, we describe the
methodology used for discovering simulators and emulators, as well as for classifi-
cation. We utilized Google Scholar digital library to discover candidate works for
our study. The following query is executed to match only the titles of the works.

("edge" OR "fog") ("simulator" OR "simulation"
OR "emulator" OR "emulation" OR "evaluation")

Additionally, we limited the publication year from 2017 onward. After several
trials, no relevant work is discovered before that year. The query is first executed
in December 2018 to obtain the initial set of work. It is repeated in July 2019 to
account for works that are more recent. Indeed, YAFS is included in our study only
after the second query. This procedure returned 406 results in total, which are then
subjected to a selection procedure based on the following exclusion criteria inspired
by [7].

e  Works that are not published in a peer-reviewed venue.
o Works that do not specifically address Fog/Edge computing infrastructures.
e  Works that do not propose a general-purpose simulator or emulator.

Consequently, we obtained 11 relevant works to include in our study. Then we
proceeded to extract main contributions and highlighted features from each work
and the descriptions in the corresponding source code repository. This procedure
yielded 29 features. After combining redundant features and excluding generic fea-
tures that are supported by all simulators, six classification features remained. Ex-
cluded generic features include high-level network model (e.g. topology definition)
and resource management.

14.2.2 Features

In this section, we describe the main features of the simulation and emulation tools
considered in our classification. Our classification is presented in Tables 14.1. Emu-
lators are excluded from this classification because they refer to a specific platform
and are used mostly to test the deployment of applications on this specific environ-
ment. In each column, ‘Y’ indicates a supported feature, ‘N’ a missing feature, and
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‘N*’ a feature that is currently not supported but indicated as a future work either
in the paper or source code repository. These tables also contain general informa-
tion about each simulator including underlying simulation platform, license for the
source code availability, the programming language used, and recent activity of the
project. We assume that the projects with a git commit within the last six months are
active (Y) as of July 2019.

Behavior

We propose the deterministic or stochastic behavior of the simulator as the main
distinctive feature. As described in the following two sections, this feature may
completely change the way the simulator is utilized. The top six simulators in Table
14.1 are deterministic, whereas bottom two (separated by a bar) are stochastic.

Energy Model
This feature indicates whether the energy consumption of the Fog/Edge nodes or
user devices is simulated or emulated.

Cost Model
A cost model accounts for the monetary aspects of the computation based on differ-
ent pricing schemes.

Low-Level Network Model
All simulators support high-level network topology design. This feature is about
whether packet-level granularity is available.

Mobility Model
Mobility indicates the possibility of the user and/or compute node movement during
the simulation runtime.

Failure Model
This feature indicates whether it is supported to simulate the failure and unavailabil-
ity of certain nodes or links.

14.3 Deterministic Simulators

Simulators introduced in this section do not contain random variables; hence, they
produce always the same output given a particular input. Deterministic models are
known to be easier to build and implement than stochastic ones. We review following
six deterministic simulators: iFogSim, EdgeCloudSim, FogNetSim++, FogExplorer,
YAFS, and RECAP.

14.3.1 iFogSim

To the best of our knowledge, iFogSim? is the first simulator specifically address-
ing Fog/Edge computing infrastructures. At the time of writing, it is also the most

Zhttps://github.com/Cloudslab/iFogSim
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Figure 14.2 High-level architecture of iFogSim.

cited work that is discussed here and arguably the most widely used one. iFogSim
is developed for IoT and Fog environments and considers the impact of resource
management techniques in latency, network congestion, energy consumption, and
operational costs [8].

The simulator supports the Sense-Process-Actuate model, that is, data are pro-
duced by the sensors, processed by the Fog nodes, and consumed by the actuators.
Alternatively, the stream-processing model is also allowed. In this model, streaming
data from the sensors are processed online at the Fog nodes and then forwarded to
cloud data centers for long-term analytics. The fog computing environment is mod-
eled as a layered architecture shown in Figure 14.2, which includes the following
elements from the bottom to the top.

1. IoT sensors/actuators are the sources and the sinks of the data, respectively.
They both interact with the environment or an external physical system.

2. Fog devices are the main computation sources. They host application modules
and can be located anywhere between the cloud and the network edge.

3. Data streams are either [oT data emitted from the sensors or log data generated
by the Fog devices.

4. Infrastructure monitoring collects log data from Fog devices, sensors, and
actuators. It keeps track of resource use, power consumption, and availability.

5. Resource management is where placement and scheduling decisions are made.
They are responsible for confirming QoS constraints. Complex resource man-
agement mechanisms such as migration can be implemented by the user.

6. Application model represents the IoT application as a directed graph based on
the distributed data flow model (DDF).

iFogSim is implemented as an extension to the widely-used event-based cloud
computing simulator, CloudSim® [9]. Two application placement strategies, namely
cloud-only and edge-ward placement, are already implemented as reference. Ad-
ditionally, a graphical user interface is available to describe the physical network
topology intuitively. Instructions to build the simulation of a Fog/Edge environment
are provided in [10].

An extension to iFogSim that supports data placement strategies is also avail-
able?. This extension also supports the formulation of the data placement problem

3http://www.cloudbus.org/cloudsim/
“https://github.com/medislam/iFogSimWithDataPlacement
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Figure 14.3 High-level architecture of EdgeCloudSim.

as a Mixed Integer Linear Program (MILP) and includes a parallel solver in order to
decrease the simulation time [11].

14.3.2  EdgeCloudSim

EdgeCloudSim’ is another extension to CloudSim with edge computing support.
Based on our literature review, it is the only deterministic simulator that targets
the edge computing systems specifically, instead of the whole Fog computing con-
tinuum. The focal points of the simulator in addition to the general features of
CloudSim include; edge-specific applications, mobility, and wide-area or wireless
network. The five main modules of EdgeCloudSim are shown in Figure 14.3 and
described as follows [12].

1. Core simulation supports the XML-based configuration of simulation scenarios
and detailed logging to facilitate the analysis of results.

2. Edge orchestrator manages the available resources, particularly taking offload-
ing, placement, and replication decisions. In EdgeCloudSim, there is a single
centralized orchestrator.

3. Networking module deals mainly with wireless networks and wide-area net-
works (WAN), which are missing in CloudSim. Both WLAN and cellular net-
works are supported for the communication between the edge servers and the
users. WAN design follows the single server queue model.

4.  Mobility of the users is simulated in EdgeCloudSim via a nomadic mobility
model. It is possible to extend this model for other mobility strategies such as
vehicular mobility.

5. Load generator provides the capability of defining different application types
and generate application tasks according to a Poisson arrival process, by default.

EdgeCloudSim is designed flexibly through the factory pattern that facilitates
extensions. Indeed, in a recent study [13], it is extended with a point-of-interest
based mobility model and a node availability model and that is based on the failure—
repair process.
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Figure 14.4 High-level architecture of FogNetSim++.

14.3.3 FogNetSim++

FogNetSim++° [14] is a simulator that focuses on the network aspects of the Fog/Edge
computing infrastructure rather than data generation and consumption. This results
in the consideration of packet drop/error rate, network congestion, and channel col-
lision. It allows the creation of a network system with static and dynamic nodes and
supports various Fog/Edge protocols for communication, including MQTT, CoAP,
and AMQP. Another focus of the simulator is the realistic mobility of the users. It
supports various mobility models as well as handover mechanisms. The simulation
kernel library is provided by the widely used discrete event library, OMNeT++.
FogNetSim++ modules are developed as an extension to the INET framework®,
which is an OMNeT++ model suite for wired, wireless and mobile networks. De-
sign architecture of the simulator is given in Figure 14.4. Three main modules are
described as follows.

1. Broker is the centralized resource manager, which is responsible for task schedul-
ing, execution, and handover. Handovers are carried out due to either user mo-
bility or load balancing. The broker also manages the communication between
Fog nodes, Cloud data center, and end-users.

2. Fog node is the provider of the computation. It is a static node located on a
network gateway. They communicate with users and sensors through wireless
access points.

3. User and sensor are the sources of the data and requests. Different from sen-
sors, which only generate data, users can also receive data. Random waypoints
as well as Mass, Gauss Markov, Chaing, Circle, Linear, and vehicle mobility
models are available.

The simulator also includes a graphical user interface as well as ready-to-use
pricing models and an energy model. Pricing models include pay-as-you-go, sub-
scription, pay-for-resources, and a hybrid one; whereas the energy model considers
the consumption of both the device and Fog node. The scheduling policy is left to
the programmer to implement.
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Figure 14.5 High-level architecture of FogExplorer.

14.3.4  FogExplorer

FogExlorer” is an interactive simulator intended for the design phase of Fog/Edge
infrastructures, and particularly for the definition of the application architecture, the
runtime infrastructure, and the mapping between these two [15]. It is based on itera-
tive modeling and simulation shown in Figure 14.5 with the following steps.

1. High-level modeling of the application (modules and inter-module data streams)
and the infrastructure (machines and interconnections).

2. Manual placement of the application modules on Fog machines.

Simulation and calculation of QoS and cost.

4. Recommendations for optimizing the placement by highlighting under-provisioned
resources and missing connections.

»

Since FogExplorer targets the application design phase, both application and
infrastructure models are quite abstract [16]. Application modules can be of three
types: sources, which produce the data; services, which process them; and sinks,
which consume them. Sources are defined by an output rate and services by process-
ing time as well as the ratio of output size. Outputs of the sources and services are
either duplicated or equally distributed to all subsequent services or sinks. Required
bandwidth between the modules is derived from these data. All three types of mod-
ules also have predefined memory requirements. Infrastructure nodes are defined
by a processing performance indicator, available memory, and unit memory price.
Connections, on the other hand, have available latency and bandwidth, as well as
bandwidth cost properties.

After the user defines the environment and suggests a module placement, the
simulator calculates four metrics: processing cost, processing time, transmission
cost, and transmission time. Additionally, it highlights under-provisioned machines
and connections as well as the cases that a data stream cannot flow due to missing
connections between the machines. Based on this feedback, the user can update the
models or placement and a new simulation is triggered. FogExplorer is implemented
as a front-end only web-based tool with JavaScript.

Shttps://github.com/CagataySonmez/EdgeCloudSim
Ohttps://github.com/rtqayyum/fognetsimpp
"https://omnetpp.org/

8https://inet.omnetpp.org/
“https://github.com/OpenFogStack/FogExplorer
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14.3.5 YAFS

Yet Another Fog Simulator’? focuses on network topology aspects of Fog/Edge
computing. It is developed on top of the SimPy discrete-event simulator frame-
work!’. Similar to EdgeCloudSim, YAFS supports text-based (JSON) configuration
and ready to analyze CSV results. Authors list the network, workload sources, cus-
tomized placement, custom processes, post-simulation data analysis, and scenario
definition as the highlights of the YAFS [17]. The following are the main modules
of the simulator that provide these features.

1. Topology and entity modeling implements the complex network theory (e.g.
scale-free networks) and represents the Fog devices and the inter-communication
links as a graph. It is possible to import CAIDA and BRITE topology models in
different file formats.

2. Application model follows the distributed data flow (DDF) model similar to
iFogSim. Here, an application is defined as a directed acyclic graph where the
nodes represent the tasks and the links their interoperability.

3. Dynamic policies deal with resource selection, task placement, and resource al-
location. It is also possible to define custom processes that model user mobility
and resource unavailability (due to failures).

4. Results include two types of events: task execution and network transmissions,
which are logged to CSV files. It is then possible to visualize these events as
graph animations.

The high-level architecture of YAFS is presented in Figure 14.6. Among all
simulators, it seems to be most actively developed and maintained one with recent
improvements. For instance, the latest version allows importing GPX traces for the
user and device mobility.

14.3.6 RECAP Simulator

The RECAP simulator [18] is currently under development within the scope of the
Horizon 2020 project Reliable Capacity Provisioning and Enhanced Remediation
for Distributed Cloud Applications (RECAP)!?. The project promises autonomous
and optimal strategies for reliable and predictable capacity provisioning, applica-
tion placement, and infrastructure management [19]. The scale of the considered

10https://github.com/acsicuib/ YAFS
https://simpy.readthedocs.io/
2https://recap-project.eu/
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Figure 14.7 High-level architecture of FogTorchPl.

systems hinders full-scale deployment for experimentation. Correspondingly, the
RECAP simulator will cooperate with the RECAP optimizer component to simulate
distributed cloud applications as well as the underlying infrastructure for a repro-
ducible and controllable evaluation. The simulator will consist of: (1) Experiment
Manager, which gathers all models and experimental system information; (2) Sim-
ulation Manager, which controls the simulation; (3) Event Coordinator, which seri-
alizes simulation results and manages optimization and failure events; and (4) Event
Generator, which injects events such as new tasks or failures to the simulation. At
the time of writing, further details regarding the implementation and features of the
simulators are not published, to the best of our knowledge. This refrains us from
providing a fair comparison to other simulators. Hence, the RECAP simulator is
excluded from our proposed classification.

14.4 Stochastic Simulators

In this section, we describe simulations based on stochastic models of Fog/Edge in-
frastructures. The main advantage of using stochastic simulators is that in contexts
with high mobility (e.g. VANETS, mobile computing) or with highly unreliable re-
sources (e.g. IoT), the availability of resources can be easily modeled as a stochastic
process, as done in works like [20, 21]. In the following, we describe two state-of-
the-art simulators: FogTorchPi and Sleipnir.

14.4.1 FogTorchPI

FogTorchPi’3 [5] is an open-source Java simulator of Fog/Edge infrastructures with
the high-level architecture depicted in Figure 14.7. FogTorchPi input consists of:

e A description of a Fog/Edge infrastructure i. In this description, it is needed
to specify the (1) IoT devices (a.k.a. “Thing”, in the simulator terminology; (2)
Fog/Edge and Cloud data centers available for application deployment. For each
one of these data centers it is needed to specify the hardware capabilities (num-
ber of cores, amount of RAM and storage); (3) Network infrastructure, along
with the probability distributions of the QoS (latency, bandwidth) available on
the communication links (Cloud-to-Fog, Fog-to-Fog and Fog-to-Things); (4)
Cost for purchasing Cloud/Fog virtual instances.

Bhttps://github.com/di-unipi-socc/Fog TorchPI
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Figure 14.8 High-level architecture of Sleipnir.

e An application description a. Each application is composed of different compo-
nents. For each component, it is needed to specify (1) hardware (CPU, RAM,
storage), software (OS, libraries, frameworks) and IoT device binding; (2) the
QoS (e.g. latency and bandwidth) needed to adequately support component-
component and component-Thing interactions after application’s deployment.

e An IoT mapping 7, describing the requirements of each connection between
each application component and IoT device (Thing);

e A deployment policy d that describes on which nodes components can be de-
ployed to respect security or business-related constraints.

Starting from the input (i,a,7, ), FogTorchPi determines admissible deploy-
ments for a over infrastructure i, given the QoS requirements of a, the IoT mapping
7 and the deployment policy 8. QoS requirements of a are determined by the user,
while QoS available on the infrastructure is determined by sampling the probability
distribution for latency and bandwidth specified in the simulator setup. FogTorchPi
follows a Monte-Carlo approach to identify the admissible deployments. First, it
performs a sampling of the QoS available on each communication link, according to
the probability distribution specified. At the end of the sampling phase, the simula-
tor performs a random admissible deployment of each application component, such
that respects (1) the QoS requirement of application a, (2) the IoT mapping 7 and
(3) the deployment policy 6. These two phases are repeated for a given number of
iterations. At the end of the iterations, the resulting deployments are collected in a
histogram, in order to calculate the frequency of each admissible deployment. For
each deployment in the histogram, FogTorchPi also calculates the QoS measures and
its cost, according to the cost model specified in the infrastructure description i.

14.4.2  Sleipnir

SLEIPNIR’# (Spark-enabled mobiLe Edge offloadIng Platform moNte-carlo sImula-
toR) is an extended version of FogTorchPi, described in [20]. The main improvement
of SLEIPNIR with respect to its predecessor is the fact that it runs on the Apache
Spark platform [22] that allows it to easily scale according to the underlying compu-
tational resources. In addition to its predecessor, it also provides simulation support
for mobile devices and for mobility traces coming from SUMO. At the time we write,
simulator architecture is as given in Figure 14.8 and its input consists of:

e  Adescription of an Edge infrastructure .#. This description includes the number
and specification of Cloud, Edge, and mobile nodes respectively described the

4https://github.com/vindem/sleipnir
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Figure 14.9 High-level architecture of EmuFog.

sets €, & and 2, and a directed graph .4 modeling the network connections
between the nodes, as in FogTorchPi;

e A map .# of a geographical area where to place the Edge nodes, according to
a placement algorithm. At the moment, the simulator offers only the possibility
of deploying Edge over three areas of the city of Vienna;

e An optional mobility trace, coming from SUMO, modeling the mobility of mo-
bile devices over the selected map;

e A workflow %, composed of different mobile application description .<7. Each
application is described as a Directed Acyclic Graph (DAG). At this moment,
the simulator offers five different types of applications: NAVIGATOR, model-
ing a navigation app; CHESS, modeling a chess game on a smartphone; FACE-
BOOK, modeling the posting of a picture on facebook; FACERECOGNIZER,
modeling a photo-processing app, and ANTIVIRUS, modeling a virus scan. In
the workflow, it is also possible to specify the frequency at which each applica-
tion occurs.

Starting from & ,.#, %, the simulator identifies admissible deployments of
tasks in # over infrastructure .#. The user specifies the QoS requirement for the
workflow, based on which it tries to determine an admissible deployment of tasks on
the infrastructure. QoS available on the infrastructure is determined by sampling the
probability distribution for latency and bandwidth specified in the simulator setup.
The sampling of infrastructure and workflow is repeated for a given number of it-
erations. At the end of the iterations, the resulting deployments are collected in a
histogram, in order to calculate the frequency of each admissible deployment.

Applications and offloading policies are defined in [20], while in [21] it has also
been used for comparing different Edge provisioning methods.

14.5 Emulators

14.5.1 EmuFog

EmuFog’’ provides a test environment for Fog computing, built on top of Max-
iNet [23] (an extension of Mininet [24] that allows the emulation of datacenter net-
work spanning over multiple network nodes). The main design objectives of EmuFog

Bhttps://github.com/emufog/emufog
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Figure 14.10 High-level architecture of Cloud4loT.

are (1) scalability, allowing the emulation of large-scale Fog/Edge computing scenar-
ios; (2) emulation of real application/workloads, allowing the developer to package
real-world application and run them in the emulated environment; (3) extensibility,
to allow each framework’s component to be replaced by custom-built components,
suiting the scenario to be emulated. The emulation workflow consists of four main
steps depicted in Figure 14.9.

1. Topology generation: in this phase, the developer generates a network topology
using tools like BRITE [25]. EmuFog also allows to load network topology from
a topology database, which ensures reproducibility of experiments on real-world
network topology;

2. Topology transformation: in this phase, the network topology generated in the
topology generation phase is converted in the EmuFog network model, which
is seen as an undirected graph where each network device is an autonomous
system;

3. Topology enhancement: in this phase, the network topology is enhanced by
adding the Fog/Edge nodes. To this end, first, the edge of the network topology
is determined, and then Fog/Edge nodes are placed in the network according to
a placement policy. Placement policy is specified in a Fog/Edge configuration
file.

4. Deployment and execution: in this phase, the enhanced topology is deployed in
the emulation environment. Fog/Edge nodes are placed in the emulated network,
while the applications are deployed on them in form of Docker containers.

In [26], the emulator is described in detail, including also performance evalua-
tion.

At the time we write, EmuFog does not provide emulation of mobility, therefore
does not allow the evaluation of mobile devices (e.g. drones, vehicles and mobile
phones). Also, no emulation of hierarchical Fog/Edge environments is provided.

14.5.2  Cloud4loT

Cloud4lIoT [27] is a lightweight PaaS platform specialized for Edge/Cloud appli-
cations, designed for the native support of IoT. Its logical model (Figure 14.10) is
composed of three layers: (1) the Central Cloud platform, which hosts the central
controller functionality and offers additional scalability when needed. This layer
works as an orchestrator and a scheduler for the workload running on the platform,
and it is implemented on a private OpenStack-based Cloud; (2) the Edge Cloud Mod-
ules, which are designed to let the data-intensive applications run close to the source
of data (in this case, the IoT devices, also defined as IoT gateways). Such mod-
ules are small-sized servers with limited storage and computational power. Such
servers can be used to offload the workload from the edges to the cloud and vice
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Figure 14.11 High-level architecture of Fogbed.

versa. Moreover, they also improve resilience, providing additional resources to the
IoT gateways; (3) the IoT gateways, representing the hardware interface with objects
and the acquisition of data from IoT sensor objects. Cloud4IloT mainly supports two
types of applications: IoT support applications and Data logic/processing.

IoT-specific applications support the deployment and the maintenance of new
objects/sensors in the field. Such applications offer the following services: (1) dis-
covery of new objects attached to an IoT gateway; (2) retrieval of the firmware
version suitable with OS and model of the needed object; (3) dispatch of the data
collected on the edge modules connected to the IoT gateway; (4) installation of new
applications to support and manage newly acquired and/or updated objects.

The latter type of applications instead is deployed, scheduled and orchestrated
from the central cloud onto the edge modules, according to the current platform con-
dition. The deployment is performed according to the users’ latency requirements:
applications with high latency requirements can be deployed on the cloud, while an
application with short latency requirements can be deployed on the Edge modules. In
the current version of Cloud4loT, orchestration is performed by employing a simple
threshold-based mechanism.

14.5.3 Fogbed

Fogbed is described in [28] with the simplified architecture in Figure 14.11. It is
described as a framework and integration toolset for rapid prototyping of fog com-
ponents in a virtualized environment. The simulator is based on Mininet [24] and
Docker. It extends the Mininet emulator by allowing the use of Docker containers
as virtual nodes. Fogbed emulation works through the deployment of pre-configured
container images, such as:

1. Cloud container image: containers of this type emulate virtual resources for IoT
applications. They can also act as a virtual cloud instance or act as proxies for
cloud services located in remote data centers.

2. Fog container image: containers of this type emulate Fog nodes that perform
processing and storage of data coming from the [oT gateways. It also performs
analytics and filtering of raw data.

3. Edge container image: containers of this type emulate IoT gateways or smart
IoT devices. It is also possible to simulate sensors and send data to a virtual Fog
instance.

The emulation workflow goes as follows: first, the developer provides the im-
ages that he/she wants to instantiate to perform the emulation. Second, the developer
defines a network topology for application testing. In contrast with EmuFog (see
Section 14.5.1), Fogbed employs its own language for the definition of topology.
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Afterward, Fogbed executes the emulator with the described topology. Once the em-
ulator starts its execution, the developer starts the management system that connects
to the emulated environment using the instance API. The management system then
deploys the application on the platform and starts the required services in the virtual
nodes. Afterward, the application can run in the platform, and network flow statistics
are collected and stored for future analysis. In [28], the authors describe a use case of
Fogbed for the development of a health monitoring application using Cloud/Fog in-
frastructures and data coming from simulated wearable sensors. At the current stage,
the emulator does not offer emulation of features like mobile offloading, fault toler-
ance and reliable management and security. This might be improved by developing
new functionalities that allow injecting failures and simulating security attacks. In
addition, a deeper study of the emulation scalability would be required.

14.6 Discussion

In this chapter, we discussed the main issues about modeling and simulation of
Fog/Edge infrastructures. Based on these issues, we identified the main character-
istics of the most used solutions in the literature for the simulation and emulation
of Fog/Edge infrastructures and designed a classification for these tools. Finally,
we described the most used solutions in the literature. According to our analysis,
we notice that there is no perfect solution for simulation of Fog/Edge infrastructure
since each of the existing tools is specifically tailored for the given characteristics.
Moreover, at the time we write, some research challenges are left open. We describe
them in the rest of this section.

Reliability

Fog/Edge computing hardware is prone to failures due to geographical dispersion,
limited resources, and the absence of advanced support systems as in cloud data cen-
ters [29]. The reliability of the resources has a direct impact on other QoS parame-
ters such as latency and energy efficiency. However, this aspect of edge computing is
mostly overlooked in existing simulators. It is left as future work in two most widely
used simulators, namely iFogSim and EdgeCloudSim. Other works such as YAFS
and FogTorchPi support dynamic availability of compute nodes and network links
due to failures. More detailed failure models (e.g. correlated failures or Byzantine
faults) are needed for the realistic simulation of the Fog/Edge environment.

Network simulation

The advent of distributed services rapidly removes the borders between computing
and networking systems and demands their joint consideration. Reflecting this cir-
cumstance, all Fog/Edge simulators and emulators support network modeling to a
certain extent. However, network models are limited to high-level topology design
in almost all cases. Only FogNetSim++ support low-level details such as packet
routing, switching, etc. This is because it is developed as an extension to an existing
network simulator, OMNeT++.
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Validation

At the time we write, most of the simulation and emulation frameworks lack an ex-
tensive and rigorous evaluation of results. This is because of the lack of real-world
implementations of large-scale Fog/Edge infrastructures. Also, the only commercial
providers delivering Edge services are Amazon, with Lambda@Edge’® and Azure
IoT Edge!”. However, commercial platforms do not allow to measure all the param-
eters that are needed by researchers, which poses several issues in collecting the data
that are necessary for validation of the simulations. In papers like [30], validation is
performed on data coming from a smart building use case. However, such datasets
are used only as an example of the workload of typical Fog/Edge infrastructures. In
many works, validation is performed using Cloud or IoT datasets, which are not suit-
able to simulate near real-time applications typical of Fog/Edge infrastructures. In
the future, there is the need for developing datasets representing real-world Fog/Edge
infrastructures or deploying more real-world infrastructures that allow to perform
measurements or to deploy applications for validation of simulations.

Missing general-purpose solution

As our classification in Table 14.1 demonstrates, there currently exists no general-
purpose solution for all simulation and emulation needs. iFogSim is the most widely
used simulation tool despite the absence of low-level network, mobility, and failure
modeling support. In problems, where the network plays the most important role,
one may prefer FogNetSim++. Alternatively, if reliability is the main focus, YAFS,
FogTorchPi, or Sleipnir might be chosen. However, these solutions are not yet as
mature or stable as iFogSim.

14.7 Conclusion

In this chapter, we propose a classification of all existing simulators and emulators
for Fog/Edge computing. First, we describe the main challenges in simulation and
modeling for Fog/Edge infrastructures. Then, we describe the research methodology
that we use to identify the main characteristics of Fog/Edge simulators and emulators
and classify existing tools for simulation and emulation of Fog/Edge infrastructures.
Afterward, we describe Fog/Edge simulators and emulators, identifying their pros
and cons. Finally, we describe the possible future research directions and identify
issues that should be solved to deliver an accurate simulation of Fog/Edge infras-
tructures. In the future, we expect increased interest in the simulation and modeling
of such infrastructures. Such interest will be even more encouraged by the increas-
ing diffusion of Fog/Edge infrastructures that will help to produce dataset that can
be used to perform validation and give more insights on the shape of real-world
Fog/Edge infrastructures.

16https://aws.amazon.com/en/lambda/edge/
17https://azure.microsoft.com/en-us/services/iot-edge/
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