
Foundations for Sustainable and
Trustworthy Edge Data Analytics

DISSERTATION

submitted in partial fulfillment of the requirements for the degree of

Doktor der Technischen Wissenschaften

by

Ivan Lujić, MSc
Registration Number 01529645

to the Faculty of Informatics

at the TU Wien

Advisor: Univ. Prof. Dr. Ivona Brandić

The dissertation has been reviewed by:

Professor Guillaume
Pierre

Assoc.-Prof. Alessandro
Vittorio Papadopoulos

Vienna, 20th December, 2021
Ivan Lujić

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Foundations for Sustainable and
Trustworthy Edge Data Analytics

DISSERTATION

zur Erlangung des akademischen Grades

Doktor der Technischen Wissenschaften

eingereicht von

Ivan Lujić, MSc
Matrikelnummer 01529645

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Univ. Prof. Dr. Ivona Brandić

Diese Dissertation haben begutachtet:

Professor Guillaume
Pierre

Assoc.-Prof. Alessandro
Vittorio Papadopoulos

Wien, 20. Dezember 2021
Ivan Lujić

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Erklärung zur Verfassung der
Arbeit

Ivan Lujić, MSc

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 20. Dezember 2021
Ivan Lujić

v

Acknowledgements

This dissertation is the result of my research work that has been partially funded through
(i) the Rucon project (Runtime Control in Multi Clouds), FWF Y 904 START-Programm
2015, (ii) 5G Use Case Challenge InTraSafEd5G (Increasing Traffic Safety with Edge
and 5G) funded by the City of Vienna, and (iii) my netidee scholarship by the Internet
Foundation Austria (IPA). Part of the research in this thesis was carried out during my
internship at IBM Research-Ireland.

I would like to thank the following people, who have helped me to complete this thesis,
and without whom this thesis would have not been the same!

First and foremost, I would like to express my very great appreciation to my supervisor
Univ. Prof. Dr. Ivona Brandić for her patient guidance, enthusiasm for the topic, and
invaluable support. Her feedback always pushed me to bring my research and work to
a higher level. I would also like to thank Professor Guillaume Pierre and Assoc.-Prof.
Alessandro V. Papadopoulos for providing insightful feedback as reviewers of this thesis.

Advice given by Prof. Stipe Čelar, Dr. Toni Mastelić, and Dr. Maria Calatrava Moreno
has been a great and valuable help when I began my doctoral studies. I would like to
especially thank my colleague Dr. Vincenzo De Maio for his support through most of my
research work and writings, which helped me to improve the quality of this work.

For many good meetings, conversations, and collaborations I am very thankful to my
colleagues and project group members especially to Dr. Atakan Aral, Fani Bašić, and
Josip Žilić. I would also like to thank Dr. Srikumar Venugopal for keeping my progress
and making my internship at IBM Research-Ireland a productive experience. I also thank
Stephanie Wogowitsch for all the help in administrative tasks over the last several years.

Finally, I wish to thank my parents (Mirko and Silvija) who offered their support,
understandings, and belief in me. I acknowledge all those who helped me in some ways
during various stages of my PhD but whose names have not appeared on this page.

Thank you and may God bless you all!

Ivan Lujić
December 2021
Vienna, Austria

vii

Abstract

Massive amounts of data are continuously generated from a growing number of Internet
of Things (IoT) devices. Based on the insights obtained through the analysis of collected
data, different data-driven decisions are made to manage IoT systems. Traditionally,
managing such systems includes data processing in the cloud. However, performing
data processing in centralized cloud data centers brings serious challenges, including the
transfer of huge amounts of sensor data over the network and new strict requirements
(e.g., latency, accuracy, privacy) from IoT applications (e.g., smart buildings, smart
traffic). For these reasons, edge computing has been introduced.

Edge computing represents a promising methodology and solution to execute analytics
close to data sources using much smaller edge servers and devices. However, scalable
and centralized cloud services cannot be generalized and directly applied to edge in-
frastructures. Also, IoT decision-making processes require timely and accurate data
processing, bringing a new set of challenges to design sustainable and trustworthy edge
data analytics. This is because performing edge data processing needs to deal with
problems such as limited computational and storage resources; sensor data that can
often be incomplete leading to inaccurate analytics; decentralized data locations posing
difficulties for latency-critical analytics placement.

We address these problems by targeting data-centric perspectives for sustainable and
trustworthy edge analytics. We introduce an adaptive data recovery mechanism for
incomplete sensor data, improving the accuracy of data analytics and decision-making
processes. Further, we propose an efficient edge storage management mechanism for
keeping only the most relevant data in limited edge storage. We also propose a self-
adaptive and data locality-aware edge analytics placement mechanism that minimizes
the latency for performing edge analytics. We show the integration of edge computing
and modern network communication technologies in a prototype deployment, ensuring
reliability and privacy for critical IoT applications.

Finally, we evaluate the proposed solutions using real-world datasets, applications, self-
designed benchmarks and testbeds using physical edge infrastructures. Besides novel
edge data services and approaches making the theoretical contribution, we also show their
practical applicability in IoT systems. The proposed solutions can help IoT systems to
produce more accurate, reliable, and timely decisions, thus, contributing to foundations
for sustainable and trustworthy edge data analytics.

ix

Kurzfassung

Riesige Datenmengen werden kontinuierlich von einer wachsenden Zahl von Internet
of Things (IoT) Geräten generiert. Basierend auf den Erkenntnissen, die durch die
Analyse der gesammelten Daten gewonnen werden, werden verschiedene datengesteuerte
Entscheidungen zur Verwaltung von IoT-Systemen getroffen. Traditionell umfasst die
Verwaltung solcher Systeme die Datenverarbeitung in der Cloud. Die Datenverarbeitung
in zentralisierten Cloud-Rechenzentren bringt jedoch ernsthafte Herausforderungen mit
sich, darunter die Übertragung riesiger Sensordatenmengen über das Netzwerk und neue
strenge Anforderungen (z. B. Latenz, Genauigkeit, Datenschutz) von IoT-Anwendungen
(z. B. intelligente Gebäude, intelligentes Verkehrsmanagement). Aus diesen Gründen
wurde Edge Computing eingeführt.

Edge Computing stellt eine vielversprechende Methodik und Lösung dar, um Analysen
in der Nähe von Datenquellen mit viel kleineren Edge-Servern und -Geräten durchzu-
führen. Skalierbare und zentralisierte Cloud-Dienste können jedoch nicht generalisiert
und direkt auf Edge-Infrastrukturen angewendet werden. Darüber hinaus verlangen
IoT-Entscheidungsprozesse auf eine zeitnahe und genaue Datenverarbeitung, was eine
Reihe neuer Herausforderungen bei der Gestaltung nachhaltiger und vertrauenswürdiger
Edge-Datenanalysen mit sich bringt. Dies liegt daran, dass bei der Durchführung von
Edge-Datenverarbeitung Probleme berücksichtigt werden müssen, zum Beispiel begrenz-
te Rechen- und Speicherressourcen; Sensordaten können oft unvollständig sein und zu
ungenauen Analysen führen; dezentralisierte Datenstandorte können die Platzierung von
latenzkritischen Analysen erschweren.

Wir behandeln diese Probleme, indem datenzentrierte Perspektiven für eine nachhaltige
und vertrauenswürdige Edge-Datenanalyse angewendet werden. Wir führen einen adap-
tiven Datenwiederherstellungsmechanismus für unvollständige Sensordaten ein, der die
Genauigkeit von Datenanalysen und Entscheidungsprozessen verbessert. Darüber hinaus
schlagen wir einen effizienten Verwaltungsmechanismus für die Edge-Datenspeicherung
vor, um nur die relevantesten Daten in einem begrenzten Edge-Speicher zu halten. Wir
schlagen auch einen selbstadaptiven und datenlokalitätsbewussten Platzierungsmechanis-
mus für Edge-Analysen vor, der die Latenz für die Durchführung von Edge-Datenanalysen
minimiert. Wir zeigen die Integration von Edge Computing und modernen Netzwerk-
kommunikationstechnologien in einer Prototypbereitstellung, um Zuverlässigkeit und
Datenschutz für kritische IoT-Anwendungen zu gewährleisten.

xi

Schließlich evaluieren wir die vorgeschlagenen Lösungen mit realen Datensätzen, An-
wendungen, selbst entworfenen Benchmarks und Testumgebungen mit physischen Edge-
Infrastrukturen. Neben neuartigen Edge-Datendiensten und Ansätzen, die den theoreti-
schen Beitrag leisten, zeigen wir auch deren praktische Anwendbarkeit in IoT-Systemen.
Die vorgeschlagenen Lösungen können IoT-Systemen dabei helfen, genauere, zuverlässige-
re und zeitnahe Entscheidungen zu treffen und so zu den Grundlagen für nachhaltige
und vertrauenswürdige Edge-Datenanalysen beizutragen.

Contents

Abstract ix

Kurzfassung xi

Contents xiii

List of Figures xv

List of Tables xvii

List of Algorithms xix

Previous Publications xxi

1 Introduction 1
1.1 Problem Statement . 4
1.2 Emerging Fields in Edge Data Analytics 6
1.3 Research Questions . 6
1.4 Scientific Contributions . 8
1.5 Significance of the Study . 11
1.6 Thesis Organization . 11

2 Background 15
2.1 Research Focus and Main Use Cases 18
2.2 Methods and Analytics . 20
2.3 Edge Hardware and Network Resources 24
2.4 Environment and Tools . 27
2.5 Research Contributions Roadmap . 29

3 Data Management Strategies for Near Real-Time Edge Analytics 31
3.1 Background on Edge Data Management 32
3.2 Adaptive Data Recovery Mechanism 35
3.3 Efficient Edge Storage Management . 41
3.4 Mediator Component for Supporting Data Recovery 48

xiii

4 Elastic Edge Data Services for Supporting Decision Making 51
4.1 Importance of Elasticity in Edge Data Services 51
4.2 Motivational Use Case . 53
4.3 Analysis of Edge Storage Services . 54
4.4 Engineering Principles for Edge Data Services 58

5 Deployment of Edge Video Analytics Systems 65
5.1 Increasing Traffic Safety with Real-Time Edge Analytics and 5G . . . 66
5.2 Data Locality-aware Edge Analytics Placement 69

6 Evaluation 81
6.1 Edge Data Management Services Evaluation 81
6.2 System Deployment and a Performance Evaluation of Traffic Safety with

Edge and 5G . 94
6.3 Self-adaptive and Locality-aware Edge Analytics Placement Evaluation 103

7 Related Work 113
7.1 IoT Data and Resource-limited Edge Systems 113
7.2 Edge Data Management . 114
7.3 Elastic Edge Data and Storage Services for Decision Making 117
7.4 Time-Critical Edge Analytics Systems 118
7.5 Data Locality-Aware Edge Analytics Placement 119

8 Conclusion 121
8.1 Summary . 121
8.2 Limitations . 123
8.3 Future Work . 124

Glossary 127

Bibliography 129

A Curriculum Vitæ 149

List of Figures

1.1 IoT connected devices worldwide in 2019 and 2030, by technology 2
1.2 Placing cloud functionalities to the edge of the network for near real-time

decision-making . 3
1.3 A smart city edge analytics scenario . 4
1.4 Organization and structure of the thesis 12

2.1 Research focus - edge data analytics for near real-time decision-making . 19
2.2 Time series with different characteristics and applied forecasting methods . 21
2.3 Evaluation of the forecast accuracy . 22
2.4 An example of applied object detection technique on a real-world image . 24
2.5 Edge hardware including Raspberry Pi, USB accelerator and camera module 25
2.6 A testbed infrastructure for evaluation of edge data analytics approaches 27
2.7 A high-level overview of the application deployment in Kubernetes 29
2.8 Organization of scientific research contributions 30

3.1 A high-level architecture model overview for edge data management framework 33
3.2 Adaptive edge data recovery mechanism of incomplete datasets - flowchart 37
3.3 Forecasting process of adaptive data recovery for multiple gaps 40
3.4 Edge storage management flowchart and design principles 42

4.1 Traditional single analytics system for university smart buildings use case 53
4.2 End-to-end monitoring metrics of elastic edge services through four data stages 59
4.3 Application-specific data flows through a new edge architecture with corre-

sponding components . 60
4.4 Elasticity management determining customized data flows and storage services 62

5.1 An example traffic scenario to illustrate the critical situations when pedestrians
and cyclists appear in the driver’s blind spots 67

5.2 An overview of the architecture design for increasing traffic safety with edge 69
5.3 An example smart city scenario to illustrate problems of tracking dataset, and

timely placement of critical on-demand video analytics 71
5.4 SEA-LEAP architecture overview . 73
5.5 SEA-LEAP monitoring service including registration of changes of data loca-

tions and tracking data movements . 75

xv

6.1 Adaptive data recovery of multiple gaps (G1
1, G2

2, G17
3 and G30

4) on dataset
h_1, employing ARIMA, as STR approach 83

6.2 Results of semi-automatic recovery of multiple gaps 85
6.3 Running time of recovering all gaps . 86
6.4 MAPE accuracy measure for three recovered gaps of missing values among 4

datasets . 87
6.5 Absolute percentage error behavior along recovered gaps comparing with

proposed AdaptOpt case . 88
6.6 Observed dataset and forecast accuracy observation with stable accuracy

clusters detection . 90
6.7 Evaluation of edge storage management on h_1 dataset - cycles 1-3 91
6.8 Released/retained data, appropriate cluster accuracy and clustered forecast

accuracies percentage of Algorithm 5 after 5 cycles 92
6.9 Projection recovery maps for six evaluated time series datasets 95
6.10 Inference time observation for different edge node configurations and two

object detection models . 97
6.11 Confidence score observation for two object detection models on RPi 4 with

Edge TPU (threshold set to 0.5) . 97
6.12 MQTT network latency observations for QoS={0, 1, 2} over different network

types (3G, 4G and 5G) . 99
6.13 MQTT network latency for QoS=1 w.r.t. edge/cloud broker placement . 100
6.14 Edge nodes setup on Vienna’s chosen intersection and the integration into

the traffic-signal chambers . 101
6.15 Real-time edge analytics demonstration for increasing traffic safety 102
6.16 Network latency for cloud/edge meta-server placement 106
6.17 SEA-LEAP testbed configuration . 107
6.18 SEA-LEAP deployment YAML file example 108
6.19 SEA-LEAP placement calculation of node location candidates in different

edge sites, driven by GuideMe and FollowMe actions 110
6.20 SEA-LEAP placement decision and network bound 112

List of Tables

3.1 EDMFrame main notations and definitions 35

4.1 Examples of data/system characteristics and impact on architectural design 55
4.2 Examples of application contexts and their impact on architectural design 56

5.1 SEA-LEAP main notations and definitions 74

6.1 Main characteristics of datasets for the EDMFrame experimental evaluation 82
6.2 Adaptive recovery dataset information . 84
6.3 Stable clusters of forecast accuracy . 90
6.4 Mean results of 5 storage management cycles per dataset 93
6.5 Comparison of PRM-based Multiple Technique Recovery (MTR) vs Single

Technique Recovery (STR) for four gaps on six datasets 93
6.6 Edge node configurations . 96
6.7 Comparative study of IoT protocols. Pub/Sub = Publish/Subscribe; R/R =

Request/Reply; P2P = Point to Point . 98
6.8 Edge node types used in the experimental setup, technical details and inference

latency benchmarks for each node type . 104
6.9 Main characteristics of datasets for SEA-LEAP evaluation 104
6.10 Network latency and bandwidth benchmark (Vienna’s suburb) 107

7.1 An overview of relevant works for architecturing elastic edge data services 118

xvii

List of Algorithms

1 Data preparation . 38
2 Gap identification . 39
3 Detection of stable clusters . 44
4 Detection of the appropriate cluster 46
5 Adaptive algorithm . 46
6 Agent-based dataset registration . 76
7 Meta scheduler . 78
8 Placement optimizer . 80

xix

Previous Publications

This thesis is based on work published in peer-reviewed scientific journals, conferences
and workshops. The following core papers build the foundation of this thesis. They
are listed here once and will generally not be explicitly referenced again. Parts of these
papers are contained in verbatim. Please refer to Appendix A for a full list of publications
by the author of this thesis.

Refereed Publications in Journals

1. Ivan Lujic, Vincenzo De Maio, Srikumar Venugopal and Ivona Brandic. SEA-
LEAP: Self-adaptive and Locality-aware Edge Analytics Placement. IEEE Trans-
actions on Services Computing, 2021. DOI: 10.1109/TSC.2021.3104458 (Early
Access)

2. Ivan Lujic, Vincenzo De Maio and Ivona Brandic. Resilient Edge Data Manage-
ment Framework. IEEE Transactions on Services Computing, vol. 13, no. 4, pp.
663-674, 1 July-Aug, 2020. DOI: 10.1109/TSC.2019.2962016

Refereed Publications in Conference Proceedings

3. Ivan Lujic and Truong Hong-Linh. Architecturing Elastic Edge Storage Services
for Data-Driven Decision Making. In: Bures T., Duchien L., Inverardi P. (eds)
Software Architecture, European Conference on Software Architecture (ECSA),
Lecture Notes in Computer Science, vol 11681, pp. 97-105, Springer, Cham, 2019.
DOI: 10.1007/978-3-030-29983-5_7.

4. Ivan Lujic, Vincenzo De Maio and Ivona Brandic. Adaptive Recovery of Incomplete
Datasets for Edge Analytics. IEEE 2nd International Conference on Fog and Edge
Computing (ICFEC), 2018. DOI: 10.1109/CFEC.2018.8358726.

5. Ivan Lujic, Vincenzo De Maio and Ivona Brandic. Efficient Edge Storage Manage-
ment Based on Near Real-Time Forecasts. IEEE 1st International Conference on
Fog and Edge Computing (ICFEC), pp. 21-30, 2017. DOI: 10.1109/ICFEC.2017.9.

xxi

https://doi.org/10.1109/TSC.2021.3104458
https://doi.org/10.1109/TSC.2019.2962016
https://doi.org/10.1007/978-3-030-29983-5_7
https://doi.org/10.1109/CFEC.2018.8358726
https://doi.org/10.1109/ICFEC.2017.9

Refereed Publications in Workshop Proceedings

6. Ivan Lujic, Vincenzo De Maio, Klaus Pollhammer, Ivan Bodrozic, Josip Lasic and
Ivona Brandic. Increasing Traffic Safety with Real-Time Edge Analytics and 5G.
ACM Proceedings of the 4th International Workshop on Edge Systems, Analytics
and Networking (EdgeSys), pp. 19–24, April, 2021. DOI: 10.1145/3434770.3459732

https://doi.org/10.1145/3434770.3459732

CHAPTER 1
Introduction

In recent years, we have seen the proliferation of the Internet of Things (IoT) sys-
tems [1], representing the networking of physical objects with the purpose of collecting
and sharing data. The adoption and usage of IoT sensors and devices are rapidly
increasing, improving people’s daily lives through various applications such as smart
buildings and homes [2], traffic management and safety [3], eHealth [4], smart cities [5],
and smart agriculture [6]. Such applications rely on monitoring different parameters such
as temperature, air quality, humidity, health status (e.g., heart rate, blood pressure),
proximity, electricity consumption, and video images, coming from plenty of IoT devices.
As reported by Statista and Transforma Insights [7], the overall number of IoT connected
devices worldwide is forecast to almost triple from 7.74 billion in 2019 to 24 billion in
2030 (see Figure 1.1), at a compound annual growth rate (CAGR) of 11%. By 2030, most
IoT connected devices (72%) are projected to be enabled by short-range technologies
(such as WiFi, Bluetooth and Zigbee), while the public (dominated by cellular networks)
and private networks will account for 20% and 8% respectively, overall generating an
enormous amount of data. Based on collected sensor data, IoT systems are often designed
to be intuitive and to make decisions like human bodies, allowing systems and applications
to perform timely actions. Accordingly, managing any IoT system generally includes
three steps, namely, sensor data collection, data processing, and acting based on the
obtained results. Still, IoT has limited capabilities, and thus traditionally relies on
distant, geographically distributed and massive cloud data centers to perform needed
processing [8, 9].
Cloud computing represents a model for enabling on-demand network access to infras-
tructure, platform, and application services. Such cloud services are based on a shared
pool of resources (e.g., data storage and servers) that can be elastically provisioned using
the pay-as-you-go model [10]. The integration of IoT and cloud computing has been
derived to manage the increasing amount of sensor data more efficiently while enhancing
complex decision-making capabilities [11].

1

1. Introduction

5.7

17.4

0.8

1.9

1.2

4.7

0

5

10

15

20

25

30

2019 2030*

N
u

m
b

e
r

o
f

co
n

n
e

ct
e

d
 d

e
vi

ce
s

in
 b

ill
io

n
s

Short range Private networks Public networks

2
Figure 1.1: IoT connected devices worldwide in 2019 and 2030, by technology [7].

However, traditional cloud data processing imposes several challenges for managing
emerging IoT systems. Critical applications like eHealth, smart buildings, or road
safety have to process a big amount of collected data with strict accuracy and latency
requirements [12, 13, 14, 15]. For example, smart building systems have requirements for
automatic management of heating and cooling systems, either to foster energy efficiency
or to support energy demand management systems integrated with smart grids [16].
Latency becomes a key factor in the performance of such critical IoT applications,
requiring processing and communication latency in the range of milliseconds [17, 18].

As geographically distributed massive data centers are usually not in the vicinity of the IoT
systems, performing analytics of IoT sensor data in the cloud brings the following issues:
(i) the overall transfer of large amounts of IoT sensor data over the network including
the execution of analytics can result in high and insufficient latency for decision-making
processes [19]; (ii) future cloud data processing of IoT sensor data may be infeasible,
since current bandwidth capabilities and network infrastructures cannot easily scale with
the growing amount of IoT sensors and generated data, causing network communication
bottlenecks [20]. Thus, reducing the time needed for collecting and processing the IoT
sensor data is of paramount importance. Recent technological advances have disrupted
the current centralized cloud computing model by moving resources close to data sources,
as it is examined in [21, 22].

Edge computing has emerged as one of the most promising methodologies and solutions
for providing data processing capabilities that are sufficient for critical IoT systems [23].
Edge computing is a computing paradigm that enables the data generated by IoT sensors
and devices to be processed in the proximity of deployed systems. It is referred to as
any computing and network resources along the path between data sources and cloud data
centers [24], enabling timely insights for latency-sensitive applications while reducing
data transfers and communication bottlenecks.

2

Edge computing has gained widespread attention from researchers and practitioners from
both academia and industry. According to [25], by 2025, Gartner predicts that around
75% of enterprise-generated data will be processed at the edge, outside the traditional
centralized data center or cloud, compared to only 10% in 2018. Consequently, the
edge computing market size is rapidly growing worldwide and is expected to increase in
revenues from USD 3.6 billion in 2020 to USD 15.7 billion by 2025, at a CAGR of 34.1%
during the forecast period [26].

In edge data analytics, as illustrated in Figure 1.2, collection and analysis of data coming
from IoT devices are performed using edge nodes. Edge nodes are designed as much
smaller embedded systems to handle necessary processing tasks in the vicinity of IoT
systems. Using edge nodes such as micro data centers, edge gateways and servers, or single-
board computers (e.g., Raspberry Pi), it is possible nowadays to exploit computation
resources across cloud boundaries and extend cloud functionalities to the network edge for
necessary data processing [19, 27]. By placing data processing close to the source of data,
edge architectures can significantly reduce the amount of data traversing the network
and minimize the overall latency of decision-making processes [24]. Cloud layer offers
more resources, and it can still be used for long-term and batch analytics considering
either the most important sensor data or results from edge analytics.

Gathering

layer

Edge

layer

Cloud

layer

Faster

response

More

resources

Batch analytics

(Near) real-time

analytics

edge micro

data center

edge

gatewaySmart homes

Smart grid

Smart buildings Intelligent

traffic system

eHealth

Figure 1.2: Placing cloud functionalities to the edge of the network for near real-time
decision-making.

3

1. Introduction

Decision-making processes of IoT systems rely heavily on the quality of the sensor data
collected and their analysis [28, 29]. The requirement for handling the emerging IoT
systems is causing rapid growth of the edge ecosystem. Accordingly, different data
services and design features of edge infrastructures are required to enable sustainable
and trustworthy edge data analytics [30]. This dissertation deals with self-adaptive and
reliable data services as foundations for sustainable and trustworthy data analytics
to ensure accurate and timely decision-making at the edge of the network.

In the following Section 1.1, we describe the research problems and motivate our research
direction of decision-making in resource-constrained edge environments. Section 1.2
discusses sustainability and trustworthiness concerns of edge data analytics and how
research problems in this thesis relate to such concerns. In Section 1.3, we provide an
overview of addressed research questions, while Section 1.4 presents the main scientific
contributions. We discuss the importance of the research and contributions to the field
in Section 1.5. The thesis organization is outlined in Section 1.6.

1.1 Problem Statement

In this section, we examine more closely an edge analytics scenario in the context of a
smart city to frame the research problems of this thesis. Based on the gathering (IoT
sensors), edge, and cloud layers shown in the Figure 1.2, Figure 1.3 illustrates two typical
IoT systems, namely, smart buildings and smart traffic, producing different sensor data.
In Step 1 data are collected and transferred to edge nodes. In Step 2, the near real-time
analytics are performed in edge nodes and based on these results, different actions can be
executed, e.g., timely sending commands to actuators or safety notifications to manage
IoT systems in Step 3. The most relevant subsets of data or results of edge analytics
can be transferred to the cloud for batch analytics and long-term decisions in Step 4.
However, current approaches for performing such near real-time data processing in edge

IoT EDGE CLOUD

CT
KW

CO

Sensor data collection

Edge

storage

Actuators

Edge

analytics

Edge nodes

Notifications

1 2

3

3

4

Cloud

analytics

Figure 1.3: A smart city edge analytics scenario.

4

1.1. Problem Statement

nodes face the challenges of achieving sustainable and trustworthy data analytics. To
achieve sustainable and trustworthy edge data analytics, especially for latency-critical
IoT applications like smart buildings or smart traffic, we address different perspectives
with the emphasis on enabling accurate and timely data-driven decision-making.

• From a data quality perspective, data coming from IoT sensors can often be
incomplete including missing and invalid measurement values, compromising the
quality of edge data analytics. Errors, missing values and outliers may appear in
data collected by IoT sensors, due to (i) the highly distributed nature of IoT systems;
(ii) monitoring system failures; (iii) data packet loss in sensor networks; (iv) aging
of the sensor; (v) changes in external conditions; or (vi) periodic sensor failures [31],
affecting both near real-time and batch analytics. Traditional approaches for data
management do not consider the impact of data quality on the accuracy of the
decision-making processes, which is of paramount importance to ensure resilient
and accurate analytics for IoT systems.

• From a data storage perspective, edge nodes contain limited storage capabilities
while dealing with the rapidly growing amount of sensor data, making it infeasible
to store all generated data [32]. Such edge limitations allow keeping only a certain
amount of relevant data at the network edge, affecting the quality of data analysis
as well as data-driven decision-making processes for IoT systems. As near real-
time analytics require handling both historical and new data to perform accurate
decision-making, especially when targeting proactive IoT systems, efficient edge
storage management becomes an important problem at the edge [31].

• From a data management perspective, IoT devices and edge nodes can be
highly decentralized and heterogeneous, making data collection, storage, and timely
analysis difficult. Current state-of-the-art addresses data storage management
problems only from individual perspectives such as data characterization [33, 34] or
system operations [35, 36], and do not consider the impact on decision-making for
IoT applications. Integration of strategies for the engineering of adaptive data and
storage services is currently an unsolved problem [37]. Managing such adaptive edge
data services within resource-constrained storage systems at runtime is fundamental
for achieving sustainable edge analytics and data-driven decision-making.

• From an architectural design perspective, in critical real-world IoT applications
such as increasing traffic safety, different notifications to road users need to be de-
livered with strict latency and accuracy requirements. Emerging challenges include
(i) placement of edge nodes respecting urbanistic space constraints; (ii) selection of
detection algorithms to identify dangerous situations based on deployed sensors;
(iii) selection of a network technology allowing fast aggregation and delivery of infor-
mation; (iv) providing real-time notifications to road users in critical intersections.
Existing works target mostly vehicles with V2X communication capabilities [38].
The state-of-the-art solutions either do not take into account safety of road users
(e.g., pedestrians) [39] or do not consider strict latency constraints [40].

5

1. Introduction

• From a data locality perspective, input datasets required for edge analytics
applications can often be subject to replication or transfer due to limited edge
capacities, edge failure probabilities, or meeting certain service level objectives. One
of the difficulties is how to automatically place analytics to the most appropriate
edge nodes while considering both data locality and strict time requirements. Many
state-of-the-art approaches for analytics placement address the data locality from
aspects such as edge-cloud workload balance [41], a trade-off between resource usage
and query accuracy [42], or the fairness of cloud resource allocation [43]. Still, they
do not consider the adaptive placement of on-demand analytics for low-latency
access to user-requested data in the distributed edge environment.

1.2 Emerging Fields in Edge Data Analytics

Despite the maturity of IoT and cloud systems, emerging edge data analytics raise new
sustainability and trustworthiness challenges [44, 45]. In this context, sustainability
represents one of the concerns in terms of (i) electricity consumption and costs involved
in transferring data over the network to the cloud [46]; (ii) sending data through the
network and choosing different design choices for IoT data processing that affect the
carbon emissions [47]; (iii) having the ability for continuous and maintainable edge data
processing without interruptions or problems. Trustworthiness represents a dimension
of trust in terms of different aspects such as privacy concerns, reliability, resilience, safety,
and correct functioning of the system [48, 44]. Assuring trustworthy systems always
comes with costs, and finding the right balance in which users are ready to pay for
trustworthy edge data analytics is an important challenge.

We consider data-oriented solutions to assure foundations for future sustainable and trust-
worthy edge data analytics that could unlock a positive impact in practical applicability
for real-world IoT applications. We target foundations for sustainability from edge data
storage, data management, and data locality perspectives. The massive growth of the
Internet traffic by end IoT devices to and from data centers can be significantly reduced
by targeting edge storage mechanisms, managing elastic edge data services, and adaptive
analytics placements. We target foundations for trustworthiness from the data quality
perspective (i.e., improving sensor data quality can make the decision-making processes
more accurate and increase the resilience to monitoring failures), an architectural design
perspective (i.e., selecting the right design choices can increase privacy and helpfulness
of the latency-critical systems), a data locality perspective (i.e., exploiting data locality
and self-adaptive analytics placements can improve reliability and ensure more trusted
decision-making processes).

1.3 Research Questions

After describing research problems and their relation to sustainable and trustworthy
edge data analytics, in this section, we outline five research questions that we address in

6

1.3. Research Questions

the thesis. The first three questions are related to the near real-time edge analytics and
resource limitations of edge nodes. The last two questions are related to the practical
applicability and deployment of edge analytics systems.

Research Question 1
How can we efficiently recover incomplete sensor data, while dealing with strict accuracy

and latency requirements of IoT applications?

IoT systems rely on data, collected from sensors and devices, that are either used for
near real-time decisions or stored for long-term analysis. However, in highly distributed
IoT systems, missing or invalid data may appear because of different reasons including
sensor failures, monitoring system failures and network failures. Analyzing incomplete
datasets can lead to inaccurate results and imprecise decisions, with negative effects on
the target systems. Also, due to the increasing size of such systems and the consequently
increasing amount of generated data, timely recovery of incomplete datasets is important
for managing emerging IoT applications. Efficient recovery of incomplete datasets at
the edge is a critical task, especially when dealing with strict latency and accuracy
requirements from IoT systems.

Research Question 2
How can we store only the most relevant amount of data in space-limited edge storage,

while keeping the quality of near real-time decisions?

The utilization of edge infrastructures, such as edge nodes, can reduce the amount of data
traversing the network, minimizing latency and overall costs for IoT systems. Based on
historical and new sensor data, edge nodes need to perform data analytics with certain
accuracy requirements for decision-making processes. However, processing huge amounts
of data at the edge is not possible due to the limited resources, i.e., storage capacity is
not scalable to keep growing amounts of data. Limited edge capacities represent one of
the critical bottlenecks for accurate edge analytics, requiring novel approaches to balance
the quantity of data stored at the edge with the quality of near real-time decisions.

Research Question 3
How can we achieve elastic data services that rely on resource-constrained edge systems?

In the IoT era, a massive number of smart devices continuously produce a wide variety of
data. To analyze these data for timely decision-making, data analytics at the network edge
is a promising solution. Nevertheless, edge nodes contain limited storage and processing
capacities posing a crucial challenge for efficient edge data analytics. Currently, these
problems are addressed by considering traditional cloud-based database perspectives,
including storage optimization and resource elasticity, while separately investigating data

7

1. Introduction

analytics approaches and system operations. To provide efficient edge data analytics,
novel elastic approaches for data and storage services in decentralized edge have to be
explored, while meeting latency objectives of time-sensitive IoT applications.

Research Question 4
How can we design edge settings to enable real-time analytics and support

decision-making in critical real-world situations?

The emerging real-world IoT applications, such as increasing traffic safety, require strict
latency and accuracy requirements. Despite advances in vehicle technology and road
modernization, traffic accidents are a huge global issue, causing deaths and injuries,
especially among pedestrians and cyclists. This often happens due to pedestrians and
cyclists in drivers’ blind spots or distractions delaying drivers’ reactions. Therefore,
timely warning drivers about critical situations is important to increase traffic safety.
New edge computing and communication technologies have been proposed to reduce
latency in critical IoT systems. However, state-of-the-art solutions either do not focus on
traffic safety or do not consider low-latency requirements in this context. Thus, a new
architecture design is necessary to address these challenges.

Research Question 5
How can we improve the overall latency of decision-making processes in which data

analytics are dependent on data locality?

Performing edge analytics requires dealing with the rapidly growing amount of data,
limited resources, and high failure probabilities of edge nodes. Therefore, data replication
is of vital importance to meet Service Level Objectives (SLOs) such as service availability
and failure resilience. In decentralized edge environments, it becomes difficult to track
data movements or locations, and adaptively guide the placement of on-demand analytics
tasks. Exploiting data locality in decentralized edge systems becomes crucial for improving
decision-making processes. This is typical in applications such as object detection in
video surveillance where the dataset of a specific camera can at different time points be
stored in different locations (distributed edge storage nodes), preventing developers from
timely and accurately executing queries or other analytic tasks. A new system design
should consider data locality and provide low-latency access to requested input data.

1.4 Scientific Contributions
The state-of-the-art systems lack efficient data management strategies for time-sensitive
edge analytics, especially targeting data-oriented solutions for edge computing and critical
decision-making processes. In this thesis, we address (i) novel edge concepts and strategies
showing the theoretical contributions and (ii) their practical applicability in real-world
latency-sensitive IoT systems and applications. In this context, considering different

8

1.4. Scientific Contributions

edge computing infrastructures, driven by data characteristics and IoT requirements,
scientific contributions of this thesis are the following.

Scientific Contribution 1
Edge data mechanism for adaptive recovery of incomplete datasets

To deal with incomplete IoT sensor data at the edge, while satisfying strict accuracy
and latency requirements of IoT applications, we propose a generic mechanism for
adaptive recovery of multiple gaps in incomplete time series. The proposed mechanism
is able to remove outliers, detect and recover multiple gaps in datasets by employing
different forecasting techniques, based on user specifications. Two approaches are shown
considering user specifications, namely, using single-technique recovery (STR) and multi-
technique recovery (MTR) by involving projection recovery maps (PRMs). PRMs are
used to automate recovery of incomplete data, detecting an optimal trade-off between
the gap size (number of missing values) and a range of historical data necessary to keep
at the edge for accurate data analytics. We evaluate the proposed approaches by using
real-world traces coming from IoT workloads such as smart homes and smart buildings.
Our system shows the ability to adaptively recover various multiple gaps in datasets while
reducing both the forecasting errors and computation time for different edge settings.
This contribution has been previously published in [49, 50] and is detailed in Chapter 3.

Scientific Contribution 2
Edge data mechanism for efficient edge storage management

Regarding the challenge of storing only the most relevant data in space-limited storage,
we propose a three-layer edge architecture model. In this model, we present an adaptive
algorithm that dynamically finds a trade-off between providing high forecast accuracy
necessary for efficient near real-time decisions, and minimizing the amount of data stored
in the limited edge storage. We focus on time series data, typical in sensor-based IoT
monitoring systems. The simulation results show that the proposed adaptive algorithm
can reduce the amount of data in each computational cycle while satisfying demands
for prediction accuracy. Therefore, our mechanism shows the potential for saving edge
storage space and supporting reliable decision-making processes based on predictive
analytics, in the context of storage-limited edge nodes. This contribution has been
previously published in [51, 50] and is detailed in Chapter 3.

Scientific Contribution 3
Engineering principles of elastic data services for resource-constrained edge systems

For the better design of future data processing that relies on resource-constrained edge
nodes, we provide a detailed analysis of elasticity and scalability of edge data and

9

1. Introduction

storage requirements together with edge analytics support. We propose a novel, holistic
approach for architecting elastic edge storage services, featuring three aspects, namely,
(i) data/system characterization (e.g., metrics and key properties), (ii) system operations
(e.g., data filtering and sampling), and (iii) data processing utilities (e.g., data recovery,
approximation and prediction). In this regard, we present seven principles for the
architecture design and engineering of edge data services. Our contributions can have a
direct impact on the quality of decision-making processes in time-sensitive IoT systems
and can help researchers and developers to utilize proposed principles in edge data services.
This contribution has been previously published in [52] and is detailed in Chapter 4.

Scientific Contribution 4
Real-world system for increasing traffic safety with edge and 5G

Regarding the challenge to design edge settings for enabling real-time analytics and
supporting decision-making in critical real-world situations, we propose a system for
increasing traffic safety with edge and 5G. It performs real-time edge analytics to detect
critical situations and deliver early warnings to drivers. After describing our design
choices, we provide a prototype implementation and evaluate its performance in a real-
world setup. The evaluation shows that our system can (i) detect critical situations in
real-time and (ii) notify affected drivers using 5G within expected latency requirements
of road safety IoT applications. This work preserves privacy and ensures low latency,
representing a promising step towards increasing overall traffic safety and supporting
real-time decision-making in future edge-deployed applications. This contribution has
been previously published in [53] and is detailed in Chapter 5.

Scientific Contribution 5
Self-adaptive and data locality-aware edge analytics placement system

Considering the challenge of executing on-demand analytics that depend on data locations,
we propose a self-adaptive and data locality-aware edge analytics placement system. It
includes a new mechanism for tracking data movements, on top of which we devise a
generic control mechanism. Our system enables on-the-fly placement of on-demand ana-
lytics considering the most appropriate dataset location that minimizes overall analytics
requests execution time. The experiments were conducted using real-world (i) object
detection application, (ii) image datasets as input, (iii) self-designed benchmarks, and (iv)
heterogeneous edge infrastructure using Kubernetes. The main novelty lies in the combi-
nation of data movement tracking and self-adaptive control logic for analytics placement
on different hardware, facilitating both code-to-data and data-to-code movements. This
can help users and developers to efficiently and timely deploy requested analytics across
different edge infrastructures, indicating a promising solution for geo-distributed edge
multi-cluster and hybrid environments. This contribution has been previously published
in [54] and is detailed in Chapter 5.

10

1.5. Significance of the Study

1.5 Significance of the Study
This work represents an important cornerstone for future IoT systems and edge applica-
tions development, aiming to efficiently cope with (i) rapidly growing amounts of IoT
sensor data; (ii) limited computation and storage capabilities of edge infrastructures;
and (iii) strict requirements from IoT system to perform time-sensitive decision-making
processes. The findings of this work should provide important insights for system
integrators and developers that are responsible for combining different system sub-
components into the edge-cloud pipelines while creating dynamic adaptations and actions
for efficient edge data processing.

This dissertation shows (i) fundamental research focusing on principles and theories as
well as (ii) applied research focusing on practical solutions in real-world edge analytics
settings. To solve identified research problems, this dissertation mainly involves the
quantitative research methodology using different measurements and observations. The
proposed solutions are available to the scientific community through several published
journal and conference papers, while most of the developed code and implementation
details are publicly available as open-source on GitHub, to facilitate greater reproducibility
of research findings. This work demonstrates practical values that can serve as a guide for
industry practitioners, e.g., enabling detection of critical situations at intersections
(e.g., pedestrians and cyclists outside drivers’ field of vision) by running real-time object
detection on resource-constrained edge nodes integrated with smart traffic lights.

IoT solution architects can also directly benefit from given insights and improve
decision-making processes in IoT systems considering data collection, storage, communi-
cation, data management and analytics. Consequently, this will help current data-driven
systems to be more intuitive, (i) making the necessary transformation from reactive to
proactive IoT systems and (ii) initiating the production of novel applications through
different IoT/edge research and development (R&D) departments.

1.6 Thesis Organization
Figure 1.4 shows the thesis organization. The rest of the thesis is structured as follows:

• Chapter 2 describes our research focus in the thesis, addressing two fundamental
use cases that motivate this work. Based on illustrated use cases, we introduce
data types and edge hardware as well as define needed methods and environments
that are used in proposed solutions in the following chapters.

• Chapter 3 presents an edge data management framework featuring different data
services for (i) the recovery of incomplete time series coming from IoT sources and
(ii) efficient edge storage management. We describe motivational scenarios and
introduce a three-layer architecture with details about each of its components. This
work covers the scientific contributions 1 and 2, and is derived from TSC 2020 [50],
ICFEC 2018 [49] and ICFEC 2017 [51].

11

1. Introduction

Foundations for
Sustainable and

Trustworthy Edge
Data Analytics

Chapter 4: Elastic Edge Data Services for
Supporting Decision Making

(ECSA 2019)
- Analysis of edge storage services
- Importance of elasticity and scalability
- Engineering principles for elastic data
services to support edge decision making

Chapter 3: Data Management Strategies
for Near Real-Time Edge Aanalytics
(TSC 2020, ICFEC 2018, ICFEC 2017)

- Edge data management framework
- Adaptive data recovery mechanism
- Efficient edge storage management
- Mediator for supporting data recovery

Chapter 5: Deployment of Edge Video
Analytics Systems

(EdgeSys 2021, TSCSI 2021)
- System for increasing traffic safety with
real-time edge analytics and 5G
- Data locality-aware edge analytics
placement system

Chapter 6: Evaluation

- Implementation details
- Technology evaluation
- Numerical results

Chapter 7: Related Work

- A state-of-the-art review
- Limitations of existing
solutions and discussion

Chapter 8: Conclusion

- Summary of the thesis
- Limitations of the thesis
- Future work

Chapter 1: Introduction

- Motivation, problem,
research questions, scientific
contributions, significance

Chapter 2: Background

- Main use cases, data types,
edge hardware, methods,
techniques, environment

RQ1, SC1
RQ2, SC2

RQ3, SC3
RQ4, SC4
RQ5, SC5

Figure 1.4: Organization and structure of the thesis.

• Chapter 4 provides the analysis of edge data and storage services and illustrates
a motivational use case. We show the importance of elasticity and scalability in
distributed and resource-constrained edge systems. Based on the analysis of edge
requirements, we propose a set of engineering principles for elastic data services to
support data-driven decision-making and describe potential implementation choices.
This work covers the scientific contribution 3, derived from ECSA 2019 [52].

• Chapter 5 presents two deployments of edge video analytics systems. The first
deployment presents the conceptual design of InTraSafEd 5G, a system for increas-
ing traffic safety with edge and 5G, corresponding to the scientific contribution
4, derived from EdgeSys 2021 [53]. We provide the motivational use case and
design requirements of a prototype implementation. An overview of the proposed
architecture design is presented, and two main components are described in detail.
The second deployment describes SEA-LEAP, a self-adaptive and locality-aware

12

1.6. Thesis Organization

edge analytics placement system. This work covers the scientific contribution 5,
derived from TSC 2021 [54]. We describe first a motivational use case and the
importance of data locality. Then, a system design is proposed and the main
components (tracking and control mechanisms) with corresponding algorithms are
discussed in detail.

• Chapter 6 provides experimental evaluations of the proposed approaches. For each
approach, we describe testbed setups as well as techniques and data that are used
during experiments. We show and discuss numerical results and outcomes.

• Chapter 7 presents an overview of the state-of-the-art, their limitations and dis-
cussion. We organize related work into five categories, namely, (i) IoT data and
resource-limited edge systems, (ii) edge data management, (iii) elastic edge data
and storage services for decision making, (iv) time-critical edge analytics systems,
and (v) data locality-aware edge analytics placement.

• Chapter 8 summarizes the thesis, provides conclusions and outlines limitations of
the proposed solutions as well as possible future research directions.

13

CHAPTER 2
Background

In this chapter, we present the background information and discuss the main use cases
and requirements for proposed approaches and implementations of edge data services.
We describe used data types, research methods, and techniques necessary to evaluate
the research aims and objectives of this thesis. We first explain the basic concepts of
IoT-based systems, cloud, and edge computing.

Internet of Things

In the Internet of Things concept, "Things" refers to different types of physical devices
(e.g., sensors, actuators, machines) able to transmit and share monitored data over
networks. IoT devices represent a part of a bigger infrastructure allowing the collection,
storage, processing and access to the produced data by users or other systems [55].
Regarding functionality, there are two types of IoT sensors, namely, (i) sensors with
memory, in which data are temporarily stored and sent periodically to defined destination
points (e.g., considering mobile IoT devices and intermittent network connectivity in
remote areas); and (ii) sensors without memory, in which data is constantly generated
and streamed to defined destination points (e.g., considering real-time environmental
monitoring and feeding data into processing systems).

Some of the key properties and characteristics of IoT include [56, 57, 58]:

• Interconnectivity. IoT devices are interconnected over private or public networks,
allowing autonomous interaction of sensors and other parts of IoT systems. To
satisfy requirements for latency, reliability, and energy efficiency, there are different
underlying wired and wireless communication technologies such as Ethernet, Wi-Fi,
ZigBee, Bluetooth, cellular networks (GSM, UMTS, LTE).

• Heterogeneity. A heterogeneous distributed IoT system is usually made of various
sub-systems. Therefore, the IoT devices can be highly heterogeneous in terms

15

2. Background

of different hardware platforms, multiple network interfaces, and communication
protocols for exchanging data.

• Sensing. Different IoT sensor types detect and measure the characteristics of their
surroundings and environmental changes. Collaborative sensing plays an important
role in enabling more intelligent decisions and better situational awareness.

• Enormous scale. The number of connected IoT devices that need to be managed
has been rapidly growing over years and will continue to grow. IoT adoption offers
new opportunities to improve decision-making processes, but at the same time
raising challenges for handling interoperability and effective data processing.

Cloud computing

Transferring and analyzing historical IoT sensor data in resource-rich and centralized
data centers enabled detecting threatening patterns in system behavior for improved
management and decisions. According to NIST [10], cloud computing represents a
model for enabling ubiquitous, convenient, on-demand network access to a shared pool of
configurable computing (e.g., networks, servers, storage) and software (e.g., applications
and services) resources that can be dynamically provisioned and released. Accordingly,
the five fundamental characteristics of cloud computing are:

• on-demand self-service, meaning that users can access needed resources automati-
cally without involving human interaction with different service providers;

• broad network access, meaning that computation resources are available for access
over the network from multiple locations and a wide range of user devices;

• resource pooling, meaning that providers use a cost-effective pooling of computing
resources to serve multiple consumers according to their demands;

• rapid elasticity, meaning that computing capabilities are elastically provisioned,
i.e., dynamically increasing or shrinking the number of physical resources according
to workload demands;

• measured service, meaning that cloud systems automatically control and optimize
usage of infrastructure resources by monitoring the provision of services, providing
transparency for both providers and consumers.

With the advent of IoT and its emerging applications, the amount of generated sensor data
continues to explode aggravating the transfer, storage, and processing of collected data.
Exceeding network capacity with enormous data traffic might cause serious challenges
including degradation of Quality of Services (QoS) and slowing down the response time
in critical IoT systems such as smart cities. For these reasons, cloud capabilities and
resources are partially moving to the edge of the network, shaping the future of collecting
and processing generated data.

16

Edge computing

Edge computing is a computing paradigm that enables data processing closer to the
source of data. According to ETSI (European Telecommunications Standards Institute)
[59], edge computing is an evolution of cloud computing bringing application hosting
from centralized data centers down to the network edge, closer to consumers and the
data generated by applications. However, there are different variants and visions of edge
computing implementations [60] and the most common are:

• fog computing (FC) proposed by Cisco [23] as a highly virtualized platform that
provides computing resources between end devices and traditional cloud data
centers, while delivering a set of new services and applications at the edge of the
network. As a new computing layer, it leverages devices like M2M gateways and
wireless routers, to store and compute data;

• cloudlet computing (CC), proposed by Satyanarayanan et al. [61] as a concept that
involves proximate computing infrastructure with one-hop network latency that can
be leveraged by mobile devices. They represent dedicated devices with capacities
similar to a data center, but on a lower scale;

• mobile edge computing or multi-access edge computing (MEC) proposed by ETSI
[62], as a key technology to enable ultra low-latency requirements and a rich
computing environment for value-added services closer to end-users. It proposes
the deployment of intermediate nodes with storage and processing capabilities in
the base stations of cellular networks.

To perform data analytics based on IoT sensor data, we consider edge nodes (e.g.,
Raspberry Pi, edge gateways, or micro data centers) residing between IoT sensors and
centralized cloud data centers. By keeping data analytics close to the source of data,
edge nodes can minimize the latency for decision-making processes as well as to improve
the energy efficiency of data transmission networks [63]. The fundamental characteristics
that make edge computing extension of the cloud include [64]:

• Location awareness and low latency. Edge nodes are aware of their logical
location regarding the entire system, and the latency for communicating with other
interconnected nodes. Data analysis and response time are much faster than from
remote and centralized cloud services.

• Geographical distribution. The services and applications targeted by edge
computing often require geographically distributed deployments. Thus, edge nodes
play an important role in delivering data processing capabilities close to end-users.

• Heterogeneity. Edge nodes can be heterogeneous regarding both hardware and
software configurations as well as network communication capabilities. Further,
they can be deployed in different environments.

17

2. Background

• Support for time-sensitive applications. Edge computing applications involve
near real-time and real-time interactions compared to traditional batch processing
in the cloud (described further on this page).

Still, to deal with (i) a big volume of IoT data, (ii) limited edge resources, and (iii) low
latency requirements, edge methodology should include additional components, modules,
techniques, and algorithms, that we address in this thesis. We target edge nodes that are
responsible for critical tasks, emergency monitoring, and response functionalities, e.g., to
improve IoT systems, support decision-making processes, or reduce network traffic [65],
with different time-sensitivity aspects.

Time-sensitivity of data processing

Regarding time-sensitivity of data processing, there are three aspects, namely:

• batch processing, meaning that processing is less time-sensitive including aggregation
and processing of huge amounts of data in centralized data locations while taking
more time to get insights over past historical data. For example, it can be in the
range of minutes and hours for big cloud data analytics in healthcare systems [66].

• near real-time processing, meaning that the processing time is important for decision-
making, but without guarantees of completing a data processing task within specific
time constraints. For example, it can be in the range of seconds and minutes for
sustainable energy management systems for smart buildings [67].

• real-time processing, meaning that the critical time period requirement needs to
be fulfilled for data processing, i.e., technically, it must guarantee response times
within specific constraints (deadlines) for real-time applications. Depending on the
system, it can be in the range of milliseconds and seconds for time-sensitive cases
(e.g., ensuring traffic safety [18] or autonomous industrial machines and cars [68]).

In this thesis, we target both near real-time (to address RQs 1 and 2 in Chapter 3, RQ 3
in Chapter 4, and RQ 5 in Chapter 5, Section 5.2) and real-time (to address RQ 4 in
Chapter 5, Section 5.1) data analytics, through different edge use cases.

2.1 Research Focus and Main Use Cases

Figure 2.1 shows the research focus of this thesis (green shaded area), in which we
address data management approaches for efficient edge analytics and latency-critical
decision-making. We can see that IoT applications require latency-sensitive analytics
based on data produced by different IoT sensors. Nonetheless, near real-time edge
analytics is just a part of the bigger picture of distributed cloud/edge architecture, where
data analyzed at the edge can be also further anonymized and used for other applications
in the cloud. In this context, cloud computing can be used for non-time-critical analytics

18

2.1. Research Focus and Main Use Cases

Edge Edge Edge

CloudNon-critical and long-

term strategical analytics

(Near) real-time analytics

for decision-making

CO

CT

Smart trafficSmart buildings

Figure 2.1: Research focus - edge data analytics for near real-time decision-making.

and long-term strategic analytics (e.g., optimization of actions in case of accidents for
police and ambulance, strategic planning of low emission zones for polluting vehicles,
intelligent traffic management during congestion, creating high definition maps for self-
driving cars). Contributions and insights from this work can help in improving emerging
IoT applications in distributed and decentralized edge environments. In particular, it
opens space for geographically distributed machine learning in a wider picture where
captured data and results of edge analytics can be further used to maintain global models
in the cloud for long-term strategical analytics.

As illustrated in Figure 2.1, in this thesis, we target two fundamental use cases smart
buildings and smart traffic, producing two different data types, namely, sensor-based
time series, and video data, and we refer to them throughout this thesis.

Time series

We partially performed evaluations of this work by collaborating with the Federal Real
Estate Company (BIG) that provided us real-world data coming from TU Wien’s Plus-
Energy Office High-Rise Building, and thereby showing potential for improvement in the
overall building management system and similar smart building scenarios.

We consider time series data that are very common in IoT data sources for applications
like smart buildings and homes [2], in contrast to other data types [69] such as audio,
status, or location data. Generally, data generated by sensor-based monitoring systems
are classified as time series [70].

Definition 1. A time series is a sequence of data points made over a continuous time
interval, where each data point consists of a timestamp and one or multiple values.

19

2. Background

Time series can be collected from systems having either equal or unequal monitoring
time intervals between data points. In the first case, they are made periodically, e.g.,
by reading outdoor temperature measurements, so-called evenly-spaced or regular time
series. In the second case, they can occur when data production is triggered by certain
events or while dynamically changing the static monitoring frequency to avoid redundant
data during steady runs of the system [71], so-called unevenly-spaced or irregular time
series. In this thesis, we focus on regular time series, since in our use cases data analytics
rely particularly on regularly time-stamped measurements.

Univariate and multivariate time series. Univariate time series refers to a single observing
variable, while multivariate time series includes two or more variables where each variable
depends on its past values and on other variables. In this work, we target only univariate
time series data, i.e., observations including only time stamps and measured values.

Video data

We partially consider evaluations of this work based on our InTraSafEd 5G project,
funded by the city of Vienna to explore 5G use cases for a better connected smart city.
We collected video data (video frames) coming from traffic cameras deployed in a typical
edge smart traffic scenario used in the project. This type of data is typical in many
different applications including increasing security and public safety.

The video frames streamed from IoT cameras need to be fed into video analytics applica-
tions in real-time to automate the analysis of the monitored surroundings. Managing such
an amount of video data represents one of the major challenges from the video analytics
perspective, representing a computationally expensive task including the execution of
neural network inferences and other machine learning models in resource-constrained
environments [72]. Therefore, performing edge video analytics is considered as the killer
app for edge computing [73].

2.2 Methods and Analytics
IoT systems are designed to make decisions based on data collected from sensors and
their analysis. To be able to store and analyze historical data timely before making
any near real-time decisions at edge nodes, we need to make the transition from exact
data analysis and reactive approaches to statistical paradigm and proactive approaches,
incorporating different data science methods. The research challenges and problems for
data-centric services and data management (described in the previous chapter) require
different research methodologies that we detail in this section.

2.2.1 Data Science

Data-centric approaches of this work involve different phases such as data collection and
preparation including data observations, sampling, and analysis of data. We apply data
science techniques for time series analysis (RQ 1, RQ 2, RQ3) to improve the effectiveness

20

2.2. Methods and Analytics

of forecasting models as shown to be critical for many time-sensitive IoT systems [74].
Different statistical methods can be used to determine data characteristics, trends, and
patterns in collected sensor data. Statistic measurements are fundamental in typical
experiments that involve time series. For example, to choose appropriate forecasting
methods in predictive analytics, it is necessary to explore data characteristics such as
data stationarity and non-stationarity.

Stationary time series implies that the statistical properties (such as mean, variance,
auto-correlation) of time series and the shape of its distribution are constant over time.
Non-stationary time series implies that the statistical properties of data change over
time, e.g., data points can include trends, seasonality, random walks.

Figure 2.2 illustrates representative examples of time series types with different charac-
teristics. The first top three graphs show non-stationary patterns with seasonality and
trends, while the bottom graph shows a dataset with stationary characteristics.

Figure 2.2: Time series with different characteristics and applied forecasting methods.

2.2.2 Time Series Forecasting

To deal with data management strategies (RQ 1, RQ 2, and RQ 3), we target the analysis
and forecasting based on time series. Time series data analysis has been a very active
research area over the past few decades. Using historical data it is possible to predict
the future values of time series data. Based on time series forecasting and analysis of

21

2. Background

unusual data behavior, life-threatening situations and system failures can be detected
even before they occur [70].

Predictive analytics has a huge potential to revolutionize critical and reactive IoT
applications. We use different forecasting methods that rely on previously described
statistical learning of data at the core. Based on characteristics and recognized patterns
of historical data, predictive analytics and forecasting methods can help us to predict
future data behaviors and consequently improve decision-making processes for managing
IoT systems. Therefore, we target predictive analytics in the context of proactive decision-
making. When historical numerical data are available, we can use different forecasting
models to observe a forecast horizon.

A forecast horizon is the number of data points representing prediction length, i.e., the
amount of data into the future for which the forecasts will be calculated. Figure 2.2 shows
calculated forecast horizons in different datasets (blue lines) with prediction confidence
intervals (shaded areas) within which calculated forecasts are expected with a certain
probability. Different lengths of historical data and forecast horizons can impact the
performance of predictive analytics in terms of error and inference time. Determining the
accuracy of time series forecasting is an essential step in many decision-making processes.
To evaluate the forecast horizon, accuracy measures are used.

Accuracy measures evaluate the forecast by considering how well the forecasting model
performs on test data that were not included during the process. Accordingly, time series
prediction evaluation is consisted of dividing datasets into two parts, namely, training
and a test set. As illustrated in Figure 2.3, training data are used to estimate different
parameters of the forecasting method to calculate forecast horizon, while test data are
used to evaluate the forecast accuracy.

t
Training data Test data

Figure 2.3: Evaluation of the forecast accuracy.

One of the most widely used measures for evaluating the forecast accuracy is Mean
Absolute Percentage Error (MAPE), defined as:

MAPE = mean(|pi|) = 100
n

n∑
i=1

|(yi − ŷi)|
yi

(2.1)

where pi is the forecast percentage error, n is the number of data points, yi − ŷi is
the forecast error, yi and ŷi are respectively the i-th actual value of y and its forecast.
MAPE is based on percentage error, meaning it is scale independent, enabling to compare
forecast performances between different data sets.

Further, different IoT sensors can have different patterns in collected time series data
(considering stationary and non-stationary characteristics). There are several widely used

22

2.2. Methods and Analytics

forecasting methods appropriate in our context. When data analytics rely particularly
on regularly time-stamped measurements, the choice of automatic forecasting techniques,
i.e., without constant user interactions, is appropriate for predicting critical events at the
edge. Since we are faced with near real-time decisions and data handling operations in
our algorithms, there are commonly used methods such as ARIMA and ETS. They are
implemented in different forecast packages, featuring automatic parameter estimations.

AutoRegressive Integrated Moving Average (ARIMA) [75] models aim to describe the
autocorrelations in the historical data based on their characteristics. To make the
model fit the data, ARIMA captures three aspects, namely, AR: Autoregression, using
the dependency relationship between an observation and its own lagged observations;
I: Integrated, using the differentiation of observed data values (i.e., subtracting the
observations from the previous values) to make the time series stationary; MA: Moving
Average, using the dependency between an observation and a residual error from a moving
average applied to lagged observations [76]. The automatic ARIMA method can obtain
different and unusual patterns (e.g., high seasonality) [77], estimate needed parameters,
and automatically compute suitable forecasts [78].

ExponenTial Smoothing (ETS) [79] models aim to describe important data components,
such as Trend and Seasonality in combinations with an additive and multiplicative Error
term. The modeling combination of these three terms results in 30 ETS models. Different
models fit different sensor data from different applications [80], and can be used for
capturing multiple complex seasonality in time series data.

2.2.3 Video Analytics

Video analytics refers to applications for processing video streams from cameras to
detect or identify specific objects, events, or behaviors in the monitored environment.
Such obtained information can help to perform certain actions and decision-making
processes in IoT systems. To automatically complete processing tasks, video analytics
often use artificial intelligence by applying different computer vision techniques and
machine learning (ML) models. In this thesis, we target object detection, a popular
computer vision technique.

Video analytics workflow for object detection requires the training of ML models, such
as convolutional neural networks (CNN) [81], on manually annotated images. The
standard Common Objects in Context (COCO) [82] is one of the large-scale datasets
containing pre-annotated images for training computer vision models. In this work, we
use pre-trained object detection models to detect different object classes in images.

For example, Figure 2.4 shows a result of the object detection workflow. A model
trained to detect the presence and location of object classes (such as persons) is provided
with an input image. The shown image is collected during our InTraSafEd 5G project
demonstration (described later in Chapter 5). Once the input image is provided to the
model, it will result in a list of objects, their spatial location (with a bounding box), and
a confidence score. A confidence score is a number indicating the confidence of the model

23

2. Background

Figure 2.4: An example of applied object detection technique on a real-world image.

that the object was detected correctly, i.e., that the predicted bounding box contains
the object. In the application, it can be also set as a cut-off threshold for accepting or
discarding detection results.

Further, TensorFlow Light [83], a lightweight version of the popular TensorFlow platform,
is proposed to build and deploy ML models on edge or IoT devices that contain limited
resource capabilities. Therefore, to run ML models on edge devices, it is required to
reduce the size of the model (i.e., affecting less storage space and memory usage).

MobileNetSSD v1 and v2. When building object detection networks, an existing network
architecture is used within the object detection pipeline, and can result in a very large
size in the order of hundreds of MB. For this reason we use MobileNetSSD v1 [84] and
v2 [85], lightweight and pre-trained CNN-based object detection models trained using
the standard COCO dataset. MobileNet represents the base network using convolution
to produce high-level features (i.e., recognition and classification), and SSD (Single
Shot MultiBox Detector) represents a detection network, i.e., an algorithm using the
last convolutional layer on the base network for the detection task. Models such as
MobileNetSSD v1 and v2 are optimized to run on resource-constrained edge hardware.

2.3 Edge Hardware and Network Resources

In this section, we describe edge hardware resources and network communication protocols
used in our evaluation testbeds.

2.3.1 Hardware

Raspberry Pi (RPi). RPi is a single-board computer, enabling a small scale computing,
e.g., in the deployment of IoT systems. The latest version RPi model 4B comes with Quad
core Cortex-A72 (ARM v8) at 1.5GHz and 8GB RAM. It also features Gigabit Ethernet,

24

2.3. Edge Hardware and Network Resources

Figure 2.5: Edge hardware including Raspberry Pi, Edge TPU and camera module.

onboard wireless networking, Bluetooth, USB components, and enables connecting
different peripheral devices such as camera modules and sensors. Considering its relatively
small physical size, this RPi can be used in edge environments (e.g., homes, factories,
weather stations), robotics, or attached to traffic lights. Figure 2.5 shows one RPi, its
camera module V2, and the USB accelerator to speed up the inferencing of ML models.

Edge accelerators. Since edge nodes have constrained resources and limited power, they
often include a TPU (Tensor Processing Unit) coprocessor to accelerate ML workloads.
TPU represents application-specific integrated circuits (ASIC) capable to execute CNN,
enabling different vision-based ML applications. We use Coral USB Accelerator that
can be attached to RPi (as shown in Figure 2.5). Edge TPU requires TensorFlow Lite
models (e.g., MobileNetSSD v1 and v2) that are quantized and compiled specifically for
the Edge TPU to speed up video analytics. Before running an inference, the model is
loaded into Edge TPU RAM to increase the performance.

2.3.2 Network Communication

Advances in connectivity, communications, and networking technologies are one of the key
enabling points for the deployment of IoT systems through data exchange and derivation
of actions. Together with the evolution of network technologies, edge data analytics (i.e.,
the potential of performing data processing at the edge of the network), are driving the
growth of IoT forward to be more efficient and reliable. From the network perspective,
edge means that the destination point is only a few network hops from the source point,
while cloud means that data packets are transferred across the Internet backbone, often
including different geographic regions.

Low latency delivered by modern communication networks like 5G is becoming a condition
for latency-sensitive IoT applications [18] (e.g., to increase traffic safety in smart cities).
With 5G-enabled phone we were able to obtain different network measurements such as

25

2. Background

network latency and available bandwidth for various network types. Based on obtained
measurements, it is possible to emulate real-world test conditions of an edge testbed
in the lab. To improve experimental evaluation setup (Chapter 6), we target Iperf, a
popular tool for performing real-time throughput measurements of different network
types. To address RQ 4 and RQ 5 in Chapter 5, we used Huawei 5G router and Samsung
S20 5G-enabled phone as shown in the lower part of Figure 2.6.

IoT Network Protocols

In the IoT environment, IoT devices need to communicate with other devices, systems,
and services to exchange messages, data, or commands for actuators. Typical network
communication models include:

• Request/Response or Request/Reply model [86] in which client software sends
a request for data or services, and server software responds to it. One of the
request/response-based application-layer protocols is Constrained Application Pro-
tocol (CoAP) [87] designed for resource-constrained IoT devices and limited network
connectivity. CoAP is a one-to-one protocol mostly used in machine-to-machine
(M2M) applications, and runs over the UDP transport layer, i.e., does not provide
secure communication (e.g., handshakes) and guaranteed delivery of messages.

• Publish/Subscribe (Pub/Sub) model [88, 89] in which entities can exchange messages
in a many-to-many style of communication. Three important components in
Pub/Sub protocol are publisher, broker, and subscriber. Publishers are entities
that send data to the topic managed by the broker. Subscribers are entities that
subscribe to certain topics to receive and consume data distributed by brokers.
Pub/Sub is widely used as an IoT communication pattern because of the distributed
nature of IoT and its ability to support a rapidly growing number of IoT devices
and services. For these reasons, we utilize Pub/Sub model in the edge system
design in this thesis (while addressing RQ 4 and RQ 5 in Chapter 5).

Message Queue Telemetry Transport (MQTT) is a popular IoT network protocol
that follows the Pub/Sub pattern. It is designed as a lightweight, client-server messaging
protocol, in which publishers and subscribers represent clients and a broker represents a
server. It runs on top of the TCP transport layer enabling many-to-many communication
and allowing messages to be broadcast to different system components asynchronously.
MQTT is suitable for small sensors and mobile devices, e.g., in M2M industry applications
[90]. It offers fast response time, reliability, and different Quality of Service (QoS) levels
for guaranteeing delivery of messages. We used open-source MQTT Eclipse Mosquito
broker and MQTT Paho client for android application development.

2.3.3 Testbed

Figure 2.6 shows the heterogeneous edge infrastructure used in our testbed setup for
experimentation (Chapter 5, Section 5.2). There are 12 RPis model 3B+ separate into 3

26

2.4. Environment and Tools

Figure 2.6: A testbed infrastructure for evaluation of edge data analytics approaches.

stackable cases and 3 RPis model 4B available in the lab. Further, all three RPis 4B have
attached Coral Edge TPU (USB accelerators) and 8MP camera modules. All RPis are
connected to the network with Netgear 24-Port 10-Gigabit Switch and Ethernet router.

2.4 Environment and Tools

In this section, we describe programming environments, platforms and tools together
with their features that helped us to evaluate proposed approaches.

2.4.1 R Environment

R1 represents a software environment and programming language for statistical computing,
graphics, and data visualizations. Based on different packages it enables applying
statistic functions and models, data manipulations, and predictive analytics. Some of
the forecasting methods and models are implemented and available to users, including
automatic ARIMA or ETS techniques.

To implement algorithms and approaches by addressing RQ 1 and RQ 2 in Chapter 3,
we use R environment that can be extended with different libraries and packages for
effective data handling and manipulations. Some of the used packages include tseries
[91] (providing methods for analyzing time series data), forecast [78] (providing methods
for univariate time series and forecasting techniques), zoo [92] (providing functions for
regular and irregular time series), ggplot2 [93] (providing functions for data visualizations
and improving the quality of graphics).

1https://www.r-project.org/

27

2. Background

2.4.2 Python

Python2 represents a high-level programming language used for data science, handling huge
amounts of data and building data science workflows. It is also often used by developers to
build and run machine learning models. To address RQ 4 and RQ 5 (described in Chapter
5) we implemented different algorithms by using python libraries such as numpy (providing
different mathematical functions for multidimensional arrays), pandas (providing methods
for quantitative data analysis and manipulation), cv2 (providing computer vision and
machine learning algorithms), PIL (Python Imaging Library featuring image processing
functionalities).

2.4.3 Docker

To support adaptive data analytics placement dependent on data locality from RQ 5,
in the experimental evaluation, we consider the design methodology of microservices
for more efficient and easily maintainable IoT analytic systems (as examined in [94]).
Microservices represent an architectural approach to structure complex applications
into a collection of smaller independent services. Such services offer easier deployment,
maintenance, and scalability, compared to traditional monolithic architecture that aims
to make an application as a single unified unit.

Docker3 is the software containerization platform that enables the encapsulation of such
microservices into containers. In this thesis, we consider data analytics services and IoT
applications to be packaged up into docker containers and can be run across different
machines, i.e., edge nodes. Considering the deployment and management of containerized
applications, many researchers and enterprises are revealing nowadays the rapid adoption
of Kubernetes platform. Docker provides integration with such existing platforms.

2.4.4 Kubernetes

Kubernetes4 represents one of the widely used open-source orchestration platform that
automates the deployment and management of containerized services and applications
across computational infrastructures. It is used by a broad community of researchers
and industry practitioners.

Kubernetes uses a pod as a basic object of execution, referring to a single or group of
related application-specific containers. So, the data analytics application (e.g., object
detection) can be represented as a pod that will be deployed to one of the edge nodes,
i.e., workers. We use Kubernetes as a platform for container orchestration, aiming to
realize and support important edge data analytics approaches in this thesis. To deploy an
application instance in Kubernetes, a set of specifications must be included to describe
desired characteristics of the Kubernetes objects such as pods.

2https://www.python.org/
3https://www.docker.com/
4https://kubernetes.io/

28

2.5. Research Contributions Roadmap

YAML (Yet Another Markup Language). Kubernetes objects, such as pods, deployments
and services, are created by using expressions in YAML configuration files, also known
as Kubernetes manifests. Using various fields in the YAML simple text format, users
can describe basic details such as the type of the Kubernetes resource, metadata, and a
desired state of the application. Description of a desired state include specifications such
as executable docker image containing the application software and resource requests
(e.g., CPU, memory).

Figure 2.7 illustrates a simple example of deploying an application using Docker and
Kubernetes. The typical way to deploy applications in Kubernetes include passing YAML
file directly to the API server component on the master node. Based on the scheduler
component, master node will then assign pods to worker nodes based on specification from
YAML file, e.g., specified container image of the application, constraints and available
resources of worker nodes. Based on the testbed setup from Figure 2.6, we created
different single and multi-node Kubernetes clusters.

apiVersion: v1
kind: Pod
metadata:
 name: myapp
spec:
 containers:
 - name: myapp
 image: myapp:v1
...

Worker
node 1

Master
node

Worker
node 2

Worker
node 3

YAML

Kubernetes cluster

Pod
Containerized app

User/
developer

Figure 2.7: A high-level overview of the application deployment in Kubernetes.

2.5 Research Contributions Roadmap
Lastly, Figure 2.8 illustrates the research contributions of the thesis through the following
three main chapters. As described in this chapter, we focus on two main uses cases and
corresponding IoT sensor data types, namely, time series and video frames. Chapter 3
presents edge data management framework featuring adaptive recovery of incomplete data
and efficient edge storage mechanisms. Chapter 4 addresses data and storage management
perspectives of distributed edge nodes with the emphasis on elastic data services for
achieving sustainable edge analytics and data-driven decision-making. Section 5.1 in
Chapter 5 proposes a system design for integrating edge infrastructures and modern
communication technologies for real-world critical IoT scenarios such as increasing traffic
safety. Finally, Section 5.2 in Chapter 5 proposes a self-adaptive placement of edge
analytics based on data locality, featuring tracking and control mechanisms.

29

2. Background

IoT sensor data

Time series

Video frames

Edge data management strategies for

near real-time decision making

Recovery of

incomplete data

Storage

management

Chapter 3

node 1 node 2 ...

Chapter 4

Data locality-aware edge

analytics placement

Tracking

mechanism

Control

mechanism

Traffic safety

with edge & 5G

Chapter 5

Figure 2.8: Organization of thesis research contributions.

30

CHAPTER 3
Data Management Strategies for
Near Real-Time Edge Analytics

In the previous chapter we presented background on edge data analytics, our research
focus, necessary research methods and environments. In this chapter, we first address
challenges of limited resources of edge nodes, while dealing with strict latency and
accuracy requirements from IoT applications. Further, we focus on the problem of
incomplete sensor data and its impact on near real-time decision-making processes.

We introduce Edge Data Management Framework (EDMFrame1), a three-layer architec-
ture model for resilient edge data management. The main contributions include:

• a novel, generic mechanism for adaptive recovery of incomplete time se-
ries, incorporating a recovery cycle that ensures outliers removal, detection, and
forecasting of each gap, using single-technique recovery (STR);

• edge storage management mechanism that achieves a trade-off between the
amount of data stored at the edge and high accuracy for predictive analytics;

• a mediator component featuring Projection Recovery Maps (PRMs) that detect
the necessary range of historical data to recover different gaps in datasets, as well as
to recommended recovery techniques, enabling multiple-technique recovery (MTR).

We propose a three layer architecture model in Section 3.1.2. Section 3.2.2 presents data
recovery mechanism, while Section 3.3.1 shows the edge storage management algorithms.
Section 3.4 describes the novel mediator component. Experimental evaluation and
discussion are shown in the evaluation Chapter 6, in Sections 6.1, 6.1.2, 6.1.3 and 6.1.4.

1https://github.com/lujic/EDMFrame

31

https://github.com/lujic/EDMFrame

3. Data Management Strategies for Near Real-Time Edge Analytics

3.1 Background on Edge Data Management

The IoT has recently attracted attention from both academia and industry. Billions
of devices are getting connected to the Internet [95], generating huge amounts of
data. Today, IoT sensors are used in many applications, like eHealth [4, 13], smart
manufacturing [96], smart home and building systems [2], and smart cities [97, 98].
These systems require sensors data collection, data analysis, and acting based on the
results of the analysis. Usually, IoT data are processed in geographically distributed
and distant cloud data centers [8, 9]. However, cloud data processing performance is
affected by the increased size of data and due to the limited scalability of current network
infrastructures [20]. Also, respecting critical predictive analytics in modern IoT systems,
meeting the strict latency and accuracy requirements [12] of decision-making processes
imposes new issues.

Edge analytics is a promising solution to latency and network size challenges by employing
edge nodes, i.e., smaller scale cloud data centers deployed closer to IoT sensors [22]. Per-
forming data processing in edge nodes allows near real-time decisions for IoT systems [23].
However, edge analytics has many open challenges. First, missing or invalid data may
appear due to different reasons such as monitoring system failures, data packet loss,
sensor aging, or changes in external conditions [31]. Performing analytics on incomplete
data can lead to inaccurate decisions [2, 99]. Second, compared to cloud data centers,
edge nodes have limited storage and scalability affecting the accuracy of predictive
analytics and, consequently, decisions for critical applications such as smart buildings [2]
or manufacturing systems [96].

3.1.1 Edge Data Management Solutions and Limitations

There are different data management strategies for IoT and edge systems, considering IoT
requests offloading [100], IoT resource management [4] and IoT security mechanism [101].
However, mentioned solutions focus on QoS for distributed edge data processing, workload
management, and ensuring the security of IoT sensitive data rather than focusing on
data reconstruction and storage management. Although some works propose various
reconstruction methods of incomplete datasets [102, 103], they do not distinguish recovery
of various gaps, despite diverse data characteristics.

We argue that for timely and accurate data recovery in modern IoT systems, it is important
to combine different recovery techniques, even within the same datasets. Predictive
analytics has a huge potential to revolutionize critical and proactive IoT applications, such
as accurate diagnosis of patients in eHealth, maintenance services, and failures prevention
in smart manufacturing and building systems. For decision-making processes, Sensor-
Cloud Infrastructure [104] is a promising solution. Other works like [105, 106] discuss
IoT sensor data reduction and dynamic compression techniques, focusing on network
optimizations. Still, there is a lack of solutions for accurate predictive analytics while
dealing with incomplete data and limited edge storage capabilities. Traditional approaches
for IoT and cloud data management address the challenges related to incomplete datasets

32

3.1. Background on Edge Data Management

and storage limitations [107, 8, 9], without considering the impact of data quality and
data resilience on decision-making processes, which is of paramount importance to ensure
efficient and accurate analytics in IoT systems [108]. In the following sections, we describe
our proposed edge data management architecture model with all components in detail.

3.1.2 Edge Data Management Architecture Model

Figure 3.1 shows an overview of the EDMFrame architecture model. At the time we write,
several frameworks for IoT data processing have been proposed, such as Eclipse Kura2,
Node-RED3 and Flogo4. Most of these frameworks focus on integrating heterogeneous
IoT devices and on the interplay between the edge and cloud layers. They either do
not provide methods for data recovery and predictive analytics, or they focus only on a
specific technique for performing these tasks. Complementary to these works, we design
EDMFrame as a service built on top of these or similar IoT data processing services,
to enhance the data recovery and analytics features they offer. The aim is to devise a
mechanism to deliver accurate near real-time decisions while coping with (i) incomplete
data, (ii) a big volume of data, and (iii) limited storage resources at the network edge.
The architecture includes three software layers, namely: gathering layer, edge layer, and
cloud layer. Even though the main focus of this paper is the edge layer, we describe all
of them for completeness.

Gathering layer transmits IoT measurements to the edge layer to reduce communication
costs, save bandwidth and meet latency requirements in distributed sensor networks.
Gateways at this layer can aggregate sensor data sending them in an appropriate format

2https://www.eclipse.org/kura/
3https://nodered.org/
4https://www.flogo.io/

$7+(5,1�

/$<(5

('*(�/$<(5 &/28'�

/$<(58VHU�VSHFLILFDWLRQV

$FWXDWRUV

%DWFK�

DQDO\WLFV

'DWD�

FROOHFWLRQ

.:

&2

6PDUW�

EXLOGLQJV

(GJH�

VWRUDJH

/RFDO�

DQDO\WLFV

'DWD�UHFRYHU\�

PHFKDQLVP

0RQLWRULQJ�

FRPSRQHQW

(GJH�VWRUDJH�

PDQDJHPHQW

)RUHFDVW�KRUL]RQ�
$FFXUDF\�WKUHVKROG
5XOHV�����

�

�

� �

�
0HGLDWRU�

FRPSRQHQW

�

�

�

Figure 3.1: A high-level architecture model overview for edge data management framework,
based on smart buildings use case.

33

3. Data Management Strategies for Near Real-Time Edge Analytics

and size to the monitoring component. In step (1) (see Figure 3.1), data are collected
from smart buildings and then in step (2) transferred to the edge layer.

Edge layer manages data through different stages of EDMFrame, to perform accurate
and timely analytics. It is composed of edge nodes, e.g., edge servers and micro data
centers [22], aiming to perform data processing closer to data sources. EDMFrame
includes the following elements:

Monitoring component. This component (i) receives and analyses data to detect outliers
and missing values, (ii) notifies the mediator component about incomplete data, (iii)
prepares data for the data recovery mechanism and (iv) triggers IoT actuators based on
local edge analytics. It can also extrapolate data characteristics for further analytics.

Specification list. Once data are transmitted to the edge layer, user specifications are
checked in step (3). Specification list contains application-dependent and user-defined
parameters, useful for both data recovery and edge data management process (e.g.,
forecast horizon, monitoring frequency, forecast method, accuracy threshold, conditions).

Data recovery mechanism. The adaptive recovery process is performed in step (4). It
receives data from the monitoring component and performs semi-automatic recovery of
multiple gaps incorporating recovery cycles (see Section 3.2.2). The output is a dataset
without gaps and cleaned from outliers.

Storage. Edge storage carries limited capacities. It stores data coming from the data
recovery mechanism and communicates with the edge storage management, mediator
component, and local edge analytics processes.

Edge storage management. In step (5), the edge storage management mechanism maintains
limited storage keeping only data relevant for near real-time decisions. It checks available
data, validates the specification list, and implements the edge storage management
phases (see Section 3.3.1). The available data are used in step (6) for local analytics,
whose output is forwarded either to the storage or to the monitoring component sending
commands to actuators in step (7).

Mediator component. The mediator manages projection recovery maps to support the data
recovery mechanism (see Section 3.4). In step (8), the mediator component communicates
with the cloud data repository. It transfers the necessary data from/to the cloud. It can
also perform data filtration and data transformation to improve data transfer between
edge and cloud layers.

Cloud layer contains the data repository, storing historical data collected from IoT
systems. It performs compute-intensive big data analytics based on entire datasets.

Sections 3.2, 3.3 and 3.4, detail all edge layer components. We design an experimental im-
plementation as a pipeline with the core algorithms: monitoring component (Algorithm 1),
data recovery mechanism (Algorithm 2) and edge storage management (Algorithms 5
utilizing Algorithms 3 and 4). Table 3.1 lists the main notations used hereafter.

34

3.2. Adaptive Data Recovery Mechanism

Table 3.1: EDMFrame main notations and definitions.

Notation Description
Din Matrix that represents incomplete input data.
Dfr Matrix that represents framed (prepared) data to be stored.
ω Vector that contains all indexes of missing values.

nom Variable that counts number of missing values (based on ω).
ω̂ Vector that stores indexes of the current gap (ω̂ ⊂ ω).
γ Vector containing forecast accuracies from the iteration phase.
vγ Standard deviation (volatility) of the entire vector γ.
sf Scaling factor dividing vγ to set threshold for finding clusters.
CLth Threshold in identifying stable accuracy clusters.
∆γ
v Set of standard deviations calculated from the sampled γ.
C Matrix containing detected stable accuracy clusters.
facth Forecast accuracy threshold.
CLap Appropriate cluster with stable forecast accuracy.
fh Forecast horizon - the amount of data as prediction length.
Sd Array representing available dataset in storage.
df Decrement factor that decreases available dataset Sd.
dfpct Decrement factor percentage.

3.2 Adaptive Data Recovery Mechanism

In this section, we focus on the data recovery mechanism based on the architecture model
proposed in the previous section. We propose a novel mechanism for the efficient recovery
of incomplete time series datasets. We first provide background and motivation for the
recovery of incomplete datasets. Then we introduce our data recovering mechanism,
describing each component and related algorithms. We also provide an analysis of the
algorithms’ complexity. The experimental evaluation is presented in Section 6.1.2.

3.2.1 Motivation for Recovery of Incomplete Datasets

The use of IoT architectures is constantly increasing, and consequently also the amount of
data collected by IoT smart devices [20]. Collected datasets can bring valuable information
by performing timely data analytics. However, to extract meaningful information from
the data, we need to ensure that datasets are complete and cleaned from outliers.

One of the use cases we select is smart home/building applications, where energy-efficient
smart homes and buildings are equipped with automated energy management systems
integrating different components such as renewable energy generation (e.g., solar and wind

35

3. Data Management Strategies for Near Real-Time Edge Analytics

turbines), smart meters, and smart sockets [16]. We consider the impact of incomplete
datasets in this scenario from two perspectives: (i) batch (long term), and (ii) near real-
time (short term) analytics. Incomplete datasets may affect batch analytics on historical
data, affecting management systems (e.g., heating and cooling management), and thus
decreasing energy efficiency while increasing operational costs. Moreover, it can affect
near real-time power management systems in the case of power fluctuation caused by
intermittent renewable sources of electricity. Analytics performed on incomplete datasets
may affect also load balancing in smart grids, and reliability of energy supplies [99].

We can find such challenges in other real-world scenarios. In intelligent traffic management
systems [109], the traffic situation is constantly monitored by different types of IoT
environmental traffic sensors [3] to optimize/control traffic flow and avoid collisions and
congestions. Inaccurate analysis due to incomplete data may affect traffic monitoring, with
negative effects on collision and congestion avoidance systems. Concerning eHealth [4],
where patients’ health is constantly monitored by different types of sensors to treat
different diseases, incomplete data may affect the accuracy of health monitoring and
prevent a timely reaction in case of problems. Therefore, it is important to efficiently
recover incomplete data before processing them.

In our approach, we consider data analytics performed on the edge nodes to deal with the
increasing scale of systems such as smart buildings and homes. However, the edge layer
has limited resources in comparison with the cloud layer, where resource-demanding batch
analytics can be performed. Solutions such as resource management mechanisms [14] and
optimized service placement [110] have been proposed to deal with the resource constraints
of the edge. However, such approaches do not propose efficient and adaptive solutions for
data quality improvement. Additionally, state-of-the-art works do not consider the time-
critical demands in the context of IoT applications and the improvement of data quality
by using different forecasting techniques. Therefore, we bridge this gap by introducing
user-defined and condition-based recovery in the choice of different forecasting techniques
for adaptive recovery of incomplete data on the edge. In this work we focus on the edge
layer, leaving the interplay between cloud and edge for future work.

3.2.2 Adaptive Mechanism Components

We present an adaptive mechanism for sensor time series data recovery. First, we define
a gap as a sequence of one or more missing or invalid consecutive values, distributed in
time series. Missing values occur due to sensor or monitoring failures, while invalid data
represent outliers due to measurement errors.

Definition 2. A gap Gkn represents the n-th gap in an incomplete dataset with k miss-
ing/invalid values.

For example, G17
2 refers to the second gap with 17 missing values. In Figure 3.2, we

provide a flowchart of the proposed recovery mechanism. First, data are prepared in
the monitoring component. To this end, data indexes from each gap in the dataset are

36

3.2. Adaptive Data Recovery Mechanism

$Q\�PLVVLQJ�

YDOXHV"

QR

5HSODFHPHQW�

RI�PLVVLQJ�

YDOXHV

*DS�

LGHQWLILFDWLRQ

'DWD�SURFHVVRU

)RUHFDVWLQJ

SURFHVV

\HV

'DWD�

SUHSDUDWLRQ�
)RUHFDVW�

DOJRULWKPV�

UHSRVLWRU\

8VHU

VWDUW
HQG

0RQLWRULQJ�

FRPSRQHQW

Figure 3.2: Adaptive edge data recovery mechanism of incomplete datasets - flowchart.

detected and marked in the data preparation module. Then, the recovery cycle starts by
detecting the amount of missing/invalid values. The cycle terminates when there are no
more missing values. Otherwise, the gap identification component detects the size of the
current gap, selecting it for the current recovery cycle. The data processor component
analyses data points preceding the current gap, that are important for the setup of the
forecasting process, including user specifications. Then, necessary data and techniques
selected from the repository are forwarded to the forecasting process. Once the gap is
recovered, conditions for the next recovering cycle are checked. The following subsections
describe all components in detail.

Data preparation

The goal of this component is to prepare an incomplete dataset for the recovery process.
To this end, we apply a set of operations that detect each gap in the dataset. The data
preparation process is described in Algorithm 1. First, line 1 creates an empty vector for
indexes of missing values in the dataset. Outliers are identified according to minimum
and maximum values, for particular sensors, that can be either application-dependent or
predefined by the user. If a data value is out of bounds, it is replaced by a missing value
indicator such as NA (Not Available) (line 2), so that the correct value can be efficiently
estimated in the recovering cycle. Missing values can occur for different reasons, like
system or sensor failures. Once the system/sensor is recovered, the next received data
point is stored right after the last generated timestamp. Therefore, to identify a gap, it is
necessary to check timestamps. We propose a solution where the monitoring component
receives data and stores either corresponding data value or NA (a missing value indicator)
for each created timestamp (lines 4-13). Counters i and j (line 3) count data from input
and prepared Dfr, respectively. If timestamps from Dfr and Din match (line 5), the

37

3. Data Management Strategies for Near Real-Time Edge Analytics

data point is moved to Dfr beside the corresponding timestamp (line 6). Otherwise, NA
is stored (line 9), and the index of a missing data point is moved to the created vector ω
(line 10). Once the while loop terminates, the vector ω contains all indexes of missing
data, the amount of which is placed in the variable nom (line 14).

Algorithm 1 DataPreparation

Input: Din[timestamp, value], Dfr[timestamp,_]
Output: vector ω
1: Create vector ω
2: Replace all outliers by a missing value indicator NA (based on thresholds)
3: i← 1; j ← 1
4: while i ≤ length(Din) do
5: if Dfr[j, 1] = Din[i, 1] then
6: Dfr[j, 2] ← Din[i, 2]
7: i← i+ 1; j ← j + 1
8: else
9: Dfr[j, 2]← NA

10: Add index j in vector ω
11: j ← j + 1
12: end if
13: end while
14: nom← length(ω)

Gap identification

The gap identification phase (see Algorithm 2) is responsible for detecting multiple
gaps in a given dataset. It identifies the limits of each gap, using this information
for the recovery process. Each gap is processed separately, to enable the selection of
an appropriate forecasting technique based on characteristics of previous data or user
predefined specifications. The counter i (line 1) is used to iterate over the vector ω,
while data index of the first missing value is copied to the beginning of the vector ω̂ and
stored also in the temporary variable t (lines 2-3). As long as there are missing values
in nom (line 4), the counter i looks for the next index of missing value, while the index
stored in the variable t is incremented by 1 (line 5). It allows checking whether a gap of
consecutive missing values exists (line 6). If indexes are consecutive, the corresponding
index is copied to the vector ω̂ (line 7). Otherwise, all missing values from the current
gap are detected (line 8), and the vector ω is updated in line 9.

Data processor

This component performs the extrapolation of data characteristics and parameters needed
for the utilization of particular forecasting methods. Necessary characteristics are obtained
during the analysis of available data preceding the first missing index of the current gap,

38

3.2. Adaptive Data Recovery Mechanism

Algorithm 2 GapIdentification

Input: Vector ω, variable nom
1: i← 1
2: ω̂[i]← ω[i] . Create vector ω̂[] storing missing indexes of current gap
3: t ← ω[i] . Create temporary variable t and store first missing index
4: while nom > i do
5: i← i+ 1; t← t+ 1
6: if t = ω[i] then
7: ω̂[i]← ω[i]
8: else
9: Remove indexes of ω̂ from ω

10: break;
11: end if
12: end while

that is identified in the previous component. To efficiently forecast NA marked gaps,
predecessor data are analyzed to derive parameters necessary to the forecasting process.
Parameter selection depends on the forecasting technique. Semi-automatic mechanism
allows two scenarios: (i) single-technique recovery (STR) and (ii) multiple-technique
recovery (MTR). In the first scenario, a single technique, that can be specified by users,
is used to recover all gaps. In the latter scenario, a technique is selected for different gaps.
Currently, we assume that techniques are predefined by users in the algorithm repository.

Forecasting process

In this component, a forecasting technique is selected from the repository and applied to
the current gap. Figure 3.3 shows the adaptive recovery process including the results of
the aforementioned components. After corresponding missing indexes are stored by the
preparation component and the first gap identified by the gap identification component,
the data processor component analyzes predecessor data before the gap. The selected
forecasting technique is then applied for the recovering process.

Figure 3.3 shows our approach, where forecasting process component applies different
techniques (t1, t2, and t3) for different gaps. The choice of suitable techniques depends
on data characteristics and forecast objectives as described in [111]. For example, we
can select different techniques according to different dataset characteristics: (i) the
Autoregressive Integrated Moving Average (ARIMA) method can be used if data contain
stationary characteristics, such as trend stationarity, that can be explored by methods
proposed in [112]; (ii) the Exponential Smoothing method (ETS), although overlapping
in some cases with ARIMA model, can be used for short-term seasonal series or with
multiple complex seasonality [113]; (iii) the TBATS forecasting model can be used for
long seasonal periods.

If seasonality occurs in time series, by checking periodicity, the data processor component

39

3. Data Management Strategies for Near Real-Time Edge Analytics

'DWD�LQGH[HV

'DWD�YDOXHV

,QGH[HV�RI�

PLVV��YDOXHV

*$3 *$3*$3

)RUHFDVWLQJ�

SURFHVV

W� W�

W�

)RUHFDVWLQJ�

WHFKQLTXH

*DS�

LGHQWLILFDWLRQ

$OJRULWKPV�

UHSRVLWRU\

Figure 3.3: Forecasting process of adaptive data recovery for multiple gaps.

can forward that information to the next component. Users can also specify additional
information about the data, such as a monitoring frequency, e.g., if temperature data
are collected every five minutes, then the seasonal parameter value 288, representing
the expected daily seasonality (12 · 24), is included in the forecasting procedure. Once
all necessary parameters are forwarded from the data processor, the forecasting process
can start. Missing values are replaced in the original dataset, and their indexes are
removed from the vector ω. Once the current gap is recovered, the next gap (if exists) is
considered in a new cycle. The recovering process stops when no more missing values are
left in nom variable.

Algorithm complexity

By looking at the while loop in line 4 of Algorithm 1, we see it iterates over available
dataset making it O(n), where n represents a number of data points in the acquired
dataset. Further, entering the while loop of Algorithm 2 (line 4), it iterates the vector
of indexes of missing values that are always less than the amount of data in array Sd.
The other lines require O(1). In case the forecasting process uses automatic ARIMA
method, the time complexity is O(n2), where n is the size of data, resulting in the overall
complexity O(n2).

Running time is affected by different factors such as the size of the gap that has to be
recovered, the amount of available historical data (finding an optimal trade-off between
the gap size and necessary amount of historical data is given by the mediator component
in Section 3.4) or seasonal complexity of time series. Since the proposed mechanism
targets resource-limited edge nodes and analysis for near real-time decisions, we expect
that the input size and dimensionality of incompleteness will not cause a violation of
latency requirements.

40

3.3. Efficient Edge Storage Management

3.3 Efficient Edge Storage Management
In this section, we focus on the edge storage management process, describing the adaptive
algorithm and its interaction between specification list and limited edge storage. We
first introduce edge storage management phases and principles, followed by a detailed
description of the proposed adaptive algorithm. We also provide an analysis of the
algorithms’ complexity. We evaluate the applicability of our approach in the experimental
scenario by utilizing different real-world datasets, as presented in the evaluation Chapter
6 in Section 6.1.3.

Storing constantly-produced sensor data on the edge can result in several problems due
to the storage limitations on the edge nodes [32]. As decision-making processes rely
on real-time analytics requiring historical data to perform accurate predictions, storage
efficient real-time analytics becomes an important issue on the edge [31].

Storage management problem has been discussed by works like [105, 106] but they consider
neither limitation of storage capacity on the edge nor accuracy of near real-time analytics
for sensitive edge systems. Due to the always increasing use of data exchanged by IoT
devices [114] and the growing tendency of using edge nodes for performing real-time
analytics on them, proposing a way to reduce the amount of data stored on edge nodes
without affecting forecast accuracy can bring substantial benefits in this context.

3.3.1 Edge Storage Mechanism Design

The effectiveness of limited edge storage nodes depends on the ability to determine the
amount of necessary data to perform accurate near real-time decisions. Hence, an edge
node should keep only relevant data for local data analytics, discarding or transferring
the rest if they are irrelevant. Based on the architectural model (see Figure 3.1), we
describe edge storage management phases, as shown in Figure 3.4, namely:

Learning phase. This phase derives information about data, such as time series pattern
recognition, used to determine the most appropriate method for that specific pattern [115],
or seasonality over a certain period, used to set up a forecast method [116]. This phase
is executed only once and provides information used by all the other phases.

Validation of the specification list. This phase checks the user-defined specification list.
During the execution of the proposed algorithm, users can update the specification list
anytime, e.g., setting forecast accuracy threshold, a new forecast horizon, or different
forecast methods. This list has to be checked each time a cycle starts since any changes
made to it can affect the whole edge storage management.

Multiple forecast iteration on the available dataset. This phase takes one of the forecasting
methods (in our case ETS or ARIMA) with accuracy threshold (facth) and forecast horizon
(fh) from the specification list. The available dataset is divided into training and test
data. Test data are equal to the number of data points specified by the user in the
specification list (i.e., the forecast horizon fh). The amount of training data is reduced
in each iteration by a certain amount of data to find parts of the dataset resulting in

41

3. Data Management Strategies for Near Real-Time Edge Analytics

/HDUQLQJ�

SKDVH

9DOLGDWLRQ�RI�WKH�

VSHFLILFDWLRQ�OLVW

0XOWLSOH�IRUHFDVW�

LWHUDWLRQ�RQ�

DYDLODEOH�GDWDVHW

'HWHFWLRQ�RI�VWDEOH�

DFFXUDF\�FOXVWHUV

'DWD�PDQDJHPHQW�

DFWLRQ

9DOLGDWLRQ�RI�

DYDLODEOH�GDWDVHW

VWDUW

'HWHFWLRQ�RI�DQ�

DSSURSULDWH�FOXVWHU

Figure 3.4: Edge storage management flowchart and design principles.

required forecast accuracy. At the end of each iteration, forecast accuracy measures are
added in the vector γ to be used in the next phase.
Detection of stable accuracy clusters. Here, stable clusters of accuracy values have to be
found in the vector γ.

Definition 3. We define a stable cluster CLst as a set of subsequent data points in the
vector γ whose standard deviation for contained values is less than a given percentage
CLpct of the standard deviation of entire vector γ, that is,

CLst ⊂ γ AND sd(CLst) < CLpct ∗ (sd(γ)) (3.1)

We define that a cluster contains at least three members. To provide reliable information
regarding future system behaviors, our predictions must be stable. When the multiple
forecast iteration process is finished, cluster detection is applied on the vector, which
consists of measuring forecast accuracy from each of forecast iterations. The method finds
stable clusters of forecast accuracies close to the threshold defined in the specification
list (detailed in Section 3.3.1).
Detection of an appropriate cluster. The previous step can return more than one stable
cluster, therefore we define how to select the most appropriate one. Stable clusters can
differ in mean value and the amount of used data. Therefore, selection priorities have
to be set. We propose the twofold priority for cluster selection and a corresponding
algorithm. The priority is to satisfy the user-specified threshold. Formally:

Definition 4. A stable cluster C[i] of forecast accuracies is appropriate if its mean value
(C[i]m_v) is the closest to the accuracy threshold facth from the specification list, namely,

CLap = arg min
C[i]

(|C[i]m_v − facth |) (3.2)

We select, as appropriate cluster CLap, the one with minimum absolute difference between
facth and C[i]m_v. If there are clusters with higher accuracy, we select the one using less
data, regarding second priority (detailed in Section 3.3.1).

42

3.3. Efficient Edge Storage Management

Data management action. This step releases irrelevant data from the edge storage.
According to the appropriate cluster, we define that the central data index of this cluster
indicates a border between relevant and irrelevant data. There are three possible cases,
namely: (i) we can reach an appropriate cluster among stable clusters respecting the
desired accuracy threshold with fewer amounts of data. In this case, all data not needed to
obtain the observed accuracy cluster are released; (ii) none of the resulting stable clusters
meets the specified accuracy threshold by the client. In this case, data management
action will select the one with fewer data points; (iii) forecast accuracy of stable clusters
is higher with an increased amount of training data, e.g., forecast based on all available
data from the storage. In that case, the mediator component can retrieve more data
from the cloud repository, if available.

Validation of available dataset. The adaptive algorithm is continuously repeated and in
each cycle checks storage for newly collected data. Depending on the application and
data generation rate, the next cycle of edge storage management can act as a triggered
event. In the next cycle, data received from the recovery mechanism and, potentially,
from the mediator component, are included. The relevance of old data can be lower
unless the prediction accuracy level shows that some stable clusters occur based on these
data. In that case, if algorithm feedback shows that accuracy increases with historical
data and the amount of currently stored data exceeds edge storage limitations, this data
processing can be performed in the cloud. Hence, the approach requires monitoring
accuracy rate variations for performed forecasts.

According to the aforementioned phases, we developed an algorithm that is capable
of reducing the amount of stored data while keeping required forecast accuracy for
predictive analytics. All phases are performed in three main algorithms: the DetectionOf-
StableClusters (Algorithm 3), the DetectionOfTheAppropriateCluster (Algorithm 4) and
the AdaptiveAlgorithm (Algorithm 5). They are detailed in the following sections.

Detection of Stable Clusters

Detection of smooth behaviors for consecutive forecast accuracies, calculated in the
forecast iteration phase, presents the cornerstone of our algorithm. There are many
clustering techniques [117] such as partitioning, hierarchical or density-based, but they
are not suitable for our case, because often they require the specification of a certain
number of clusters beforehand as well as separating the entire dataset based on similarity.
Our case requires a dynamic approach that discovers as few clusters as possible based
on Definition 3, and considering only corresponding parts of the entire dataset. The
process consists of three steps. First, we calculate the overall standard deviation for all
forecast accuracies and mark it as a baseline. Second, forecast accuracies are grouped
into clusters of fixed length and the standard deviation is calculated per cluster. Third,
obtained deviations are compared to the baseline considering the previously calculated
threshold. Consequently, stable clusters show where the forecast accuracies are stable.

Pseudo-code for detecting stable accuracy clusters is presented in Algorithm 3. The

43

3. Data Management Strategies for Near Real-Time Edge Analytics

method requires vector γ consisting of forecast accuracy measures (MAPA) from the
forecast iteration process and scaling factor sf that is used for the threshold calculation.
The threshold CLth differs among different datasets, because each measurement has
its scale of values with unpredicted volatility. Based on experiments, by default, the
scaling factor is always equal to 5 in the first attempt of stable clusters detection. This
means that only stable clusters with CLpct equal to 20% (see Definition 3) of the baseline
standard deviation will be selected. Still, even with a fixed threshold, it is possible to have
no clusters. In case it is impossible to meet any stable clusters for the specified threshold,
i.e., since forecast accuracies show greater dispersion, the threshold is increased and the
process is repeated. For example, by decreasing the scaling factor from 5 to 4, the CLpct
becomes 25% of the baseline for detecting stable clusters, by setting in Algorithm 5.

Algorithm 3 DetectionOfStableClusters

Input: Vector of iteration results γ, scaling factor sf
Output: Matrix C
1: vγ ← sd(γ) . Calculate standard deviation (volatility) of entire vector γ
2: CLth ← vγ

sf
. Calculate threshold CLth

3: Create vector ∆γ
v storing STDs of sliding windows (length 3) on vector γ

4: i← 1; j ← 1 . Initialize counters i and j
5: Create matrix C forming mean value, start and end index of stable clusters
6: while i < length(∆γ

v) do
7: if ∆γ

v [i] < CLth then . Satisfying conditions in Equation 3.1
8: Add cluster in C such that
9: C[j, 1]← mean value of corresponding range in γ

10: C[j, 2]← start data index of corresponding range
11: C[j, 3]← end date index of corresponding range
12: i← i+ 1 . Incrementing i to check next potential cluster member
13: if ∆γ

v < CLth then . Satisfying conditions in Equation 3.1
14: while ∆γ

v [i] < CLth do
15: Update mean value C[j, 1]
16: Update end index C[j, 3]
17: i← i+ 1
18: end while
19: j ← j + 1
20: else
21: i← i+ 1; j ← j + 1
22: end if
23: else
24: i← i+ 1
25: end if
26: end while
27: Return C

44

3.3. Efficient Edge Storage Management

In line 1, the algorithm calculates the standard deviation of the entire vector γ and divides
the result (line 2) by scaling factor sf to set a threshold CLth for finding clusters. In
line 3, standard deviations will be calculated for each grouped iteration results in a sliding
window in vector γ and then stored to vector ∆γ

v . Before searching for stable clusters, the
algorithm initializes two counters and creates an empty matrix in lines 4-5, i.e., counter i
will count clusters in ∆γ

v and counter j will denote recognized stable clusters in matrix
C including attributes: mean value of forecast accuracies and corresponding ranges of
cluster indexes. To detect stable clusters, the algorithm starts from the beginning of ∆γ

v

(line 6) and checks if a standard deviation of the first cluster is below threshold CLth
(line 7). If a cluster is recognized as stable, corresponding data will be added to C (lines
8-11). In some cases, stable clusters can be wider, so it is necessary to check the neighbor
cluster (line 12), and if the new one is recognized as stable (line 13), it will continue to
check other neighbors (line 14). For each next cluster recognized as stable, the existing
cluster is extended updating its corresponding mean value and end index (lines 15-16)
and checks the next one (line 17). When there are no more stable clusters in a row, a
place for a new stable cluster is prepared increasing counter j in line 19. In case the
next cluster is not recognized as stable (line 20), the algorithm will simply close the
existing cluster and check the next one (line 21). For each non-stable cluster (line 23),
the algorithm will increment counter i (line 24) and loop back to line 6. Finally, the
matrix C, whose rows represent stable clusters with the attributes, is returned.

Detection of the Appropriate Cluster

The cluster selection process is described in Algorithm 4. It starts by checking the
number of stable clusters. The else branch in line 11 is executed only if one stable
cluster is recognized and it will become the appropriate cluster (line 12), otherwise, the
algorithm will find the appropriate cluster (lines 2-10). Considering the priority, the
appropriate cluster becomes the one that is closest to the specified accuracy threshold
(line 2). Further, all stable clusters (line 3) that have better accuracy than selected
CLap, i.e., higher mean value, and whose start index begins after end index of selected
CLap (line 4), become potential appropriate clusters (line 5). If there are such clusters
(lines 8-10), the one including less data, i.e., which has the lowest start index (line 9), is
selected as a new appropriate cluster CLap. Finally, CLap is returned in line 14.

3.3.2 Adaptive Algorithm for Edge Storage

The adaptive algorithm integrates all design principles shown in Figure 3.4, and includes
calls on described Algorithms 3 and 4. Algorithm 5 requires a forecast horizon fh and
accuracy threshold facth that are specified in the specification list, and array Sd that
denotes data available in storage. As shown in Figure 3.4, the learning phase helps to
select and set up the appropriate method. One of the possibilities is to find periodicity
as a necessity to determine the seasonality and thereby to make a better forecast, as
described in [118].

45

3. Data Management Strategies for Near Real-Time Edge Analytics

Algorithm 4 DetectionOfTheAppropriateCluster

Input: Matrix C, accuracy threshold facth
Output: Appropriate cluster CLap
1: if C has more than 1 cluster then
2: Compute CLap using Equation 3.2
3: for each cluster i ∈ C do
4: if C[i]m_v > CLm_v

ap AND C[i]start_index > CLend_index
ap then

5: Add C[i] to temporary matrix A
6: end if
7: end for
8: if A is not empty then
9: CLap ← Ai with minimum starting index

10: end if
11: else
12: CLap ← C[0]
13: end if
14: Return CLap

Algorithm 5 AdaptiveAlgorithm

Input: forecast horizon fh, accuracy threshold facth , storage data Sd
1: Calculate df using Equations 3.4 and 3.5
2: while length(Sd) > 2 ∗ fh do
3: Perform method (Sd, fh)
4: Calculate MAPA (See Equation 6.1)
5: Add MAPA to vector γ
6: Sd ← Sd decreased by df
7: end while
8: sf ← 5 . Set threshold on 20% of overall standard dev., i.e., 1

5)
9: C ← DetectionOfStableClusters(γ, sf)

10: while C is empty do
11: sf ← sf − 1 . Decrease scaling factor sf
12: C ← DetectionOfStableClusters(γ, sf)
13: end while
14: CLap ← DetectionOfTheAppropriateCluster(C, facth) . Find CLap
15: Release data from S in range between the oldest and the central index of the

appropriate cluster CLap, retaining only relevant data in the storage.

At the beginning of the algorithm, the decrement factor df is calculated utilizing Equa-
tions 3.4 and 3.5. The calculated df will be decreasing storage data Sd in the multiple
forecast iteration phase. Forecast iterations (lines 2-7) will continue until the amount
of data in Sd becomes less than the two lengths of a forecast horizon (more details in
Section 3.3.2). Appropriate forecast method uses storage data Sd and other attributes

46

3.3. Efficient Edge Storage Management

(e.g., periodicity), to make prediction for defined forecast horizon fh and calculates Mean
Absolute Percentage Accuracy (MAPA) (see Equation 6.1) in lines 3-4. At the end of each
iteration, the MAPA is stored in vector γ (line 5), and a certain amount of old data is
removed (line 6) based on decrement factor df . Next, for the detection of stable accuracy
clusters phase (lines 9-13), scaling factor sf is set to number 5 representing the impact of
20% in determining the threshold for finding stable clusters in Algorithm 4. If any stable
cluster is recognized, the matrix C gets corresponding information (line 9): mean value,
start and end index of the cluster. Otherwise, if stable clusters cannot be found (line 10),
the algorithm will decrease the sf and keep looking for the clusters (lines 11-12). Line 14
finds the appropriate cluster CLap. Finally, data in the array Sd are released in the range
between the oldest index and the central index of the appropriate cluster CLap (line 15).
The adaptive algorithm repeats itself based on demands in the specification list.

Optimal parameter settings

Our goal is to set up necessary parameters enabling continuous operation of the edge
storage management mechanism. To allow proper performance of proposed algorithms,
storage must always contain enough data for training, plus additional test data (amount
of which is equal to defined forecast horizon), and there must be enough number of
forecast iterations in each cycle to find stable clusters. This is ensured by keeping training
data as:

T = 2 ∗ fh + k, k ≥ 3 (3.3)
where T denotes the amount of training data points, fh denotes a forecast horizon that
is application dependent and given in the specification list (see Figure 3.1), and k is a
natural number. Based on Equation 3.3, there will always be at least 4 forecast iterations
resulting in 4 MAPA measures as a basis for finding at least one stable cluster (see
Definition 3.2).

Also, running time depends on the number of multiple forecast iterations, which is affected
by the decrement factor df , calculated using Equations 3.4 and 3.5:

ψ = round(dfpct ∗ (T − 2 ∗ fh)) (3.4)

df =
{
ψ, if ψ >= 1.
1, otherwise,

(3.5)

where round() is a function that rounds the result half away from zero to integer and
dfpct is decrement factor percentage. In order to set optimal value for dfpct, we performed
experiments using all possible ranges of dfpct on different datasets. The evaluation is
done on 144 data points, representing data collected every 5min over 12h with 1h forecast
horizon, satisfying Equation 3.3 to have enough iterations to find stable clusters. Thus,
maximum dfpct of 30%, which is a representative from a range of 26%-33%, gives the
necessary 4 forecast iterations. Results showed that as dfpct becomes very low (1%-2%)
and very high (8%-30%), the algorithm cannot always find stable clusters in the first run
of calculation (Algorithm 5, line 8) while at the same time having a number of clustered

47

3. Data Management Strategies for Near Real-Time Edge Analytics

MAPA measures near 100%. Among the rest dfpct values, to find a setting that releases
more data without significantly decreasing the accuracy of the appropriate cluster, we
set dfpct at 3% resulting in 34 iterations on average.

Further, we assume that the prediction of data, potentially containing seasonality, requires
at least twice as many data points compared to the forecast horizon. This assumption
is derived from the constraint that the prediction of one period of seasonal time series
requires at least two periods of prior data. Therefore, to calculate the df , the training
dataset is reduced by two lengths of the fh.

Algorithm complexity

Considering Algorithm 5, its complexity is O(n2), where n represents the size of data.
ARIMA method (line 4) has O(n2) complexity and the outer while loop (lines 2-7)
iterates the entire dataset until n is equal to the two lengths of the specified fh. In
the worst case, it is decreased by 1 at each iteration, leading to a O(n). Further, both
Algorithms 3 and 4 have the complexity of O(n). The while loop (line 6) from the
Algorithm 3 iterates over the size of the vector ∆γ

v . The inner while loop (line 14) uses
the same counter as the outer loop resulting in the same O(n) and decreasing the space
complexity by not creating new objects in line 8. Algorithm 4 instead iterates over each
cluster in the for loop in line 3, whose number is always less than n. Other operations
have either a O(1) or a O(n), resulting in a O(n2) time complexity. Such complexity
can be reduced by using less accurate forecasting methods. Even though O(n2) is not
suitable for big datasets, it provides acceptable response time in this context since we
target edge storage.

3.4 Mediator Component for Supporting Data Recovery

Storage space limitations on edge nodes prevent keeping all historical data collected from
IoT sensors. However, some IoT systems require both local edge and global batch data
analytics [119, 23]. Consequently, an edge node can keep only relevant data, and send
all acquired data to be integrated into the cloud data repository. Once historical data
are available in the cloud, batch analytics can be applied. By using historical data it is
possible to calculate the Projection Recovery Map (PRM), which recommends ranges of
data for recovering gaps of various lengths, as well as the appropriate recovery technique
for each dataset. In this context, the proposed mediator component can either employ
cloud-based PRMs to improve recovery of gaps detected by the monitoring component
(see Figure 3.1), or transfer data considering local analytics requirements. In both cases
the mediator can retrieve necessary data from the cloud, storing them locally when
needed. Here, we describe the first case.

Regarding PRMs, recommended ranges of data for certain lengths of detected gaps can
be found by slightly modifying the edge storage management mechanism (presented in
Algorithm 4). Here, selecting the appropriate cluster CLap_med means selecting a cluster

48

3.4. Mediator Component for Supporting Data Recovery

with the highest accuracy, namely:

CLap_med = arg max
C[i]

(C[i]mean_value) (3.6)

In this case, we employ priority criteria different from Section 3.3.1. Once the CLap_med is
detected, bounds (upper and lower) for the number of used data points and corresponding
MAPA measures are stored. This process is repeated with multiple-recovery techniques
(MTR case) over consecutive gap lengths and then merged in a PRM for each dataset.
In extreme cases where big gap lengths are expected, PRM can be calculated over
non-consecutive number of missing values and, if required, interpolate ranges that are not
calculated. To check the accuracy of PRM-based MTR, we test it on available historical
data (evaluated in Section 6.1.4).

49

CHAPTER 4
Elastic Edge Data Services for
Supporting Decision Making

On top of the proposed edge data management framework in the previous chapter, we
provide a thorough analysis of scalability challenges in edge environments. In the first
step, we focus on architectural requirements and the design of elastic edge storage and
data services. This chapter contributes:

• a detailed analysis of edge storage services with application-specific analytics
support, including different utilities and analytics requirements;

• a specification of a set of necessary principles for engineering elastic strategies,
leading to highly customized software-defined elastic storage services, suitable for
dynamic data workload characterizations at the edge.

In Section 4.1, we describe the importance of elasticity regarding data services at
the network edge. In Section 4.2 we provide a motivational scenario on elastic edge
storage services. Detailed analysis of strategies for elastic edge storage services and
their requirements are provided in Section 4.3, on top of which we propose engineering
principles for elastic edge storage in Section 4.4.

4.1 Importance of Elasticity in Edge Data Services
Today, owing to the evolution of sensor and communication technologies, IoT systems are
shaping the world. It is possible to make data-driven decisions by monitoring different
parameters from "Things" present in, e.g., smart buildings [120], smart grids [121],
manufacturing systems [122], or road infrastructure and vehicles [123]. The increased
amount of IoT sensor data, leading to these emerging IoT application areas, requires

51

4. Elastic Edge Data Services for Supporting Decision Making

near real-time analytics executed on a set of distributed edge nodes (e.g., lightweight
devices, micro data centers, and edge/fog servers) that store and process data. The
introduction of edge computing can help to deal with time-sensitive requirements for
accurate decisions based on IoT data [34].

However, unlike scalable cloud data repositories, edge systems have limited storage
capacities, whereas a certain amount of IoT sensor data have to be stored and processed
in the proximity of the data sources [124]. Consequently, any edge data service must store
only the most relevant data for edge analytics, whereas non-relevant data either have to
be discarded or moved to cloud data centers. But the relevancy is determined by analytics
contexts: new edge infrastructure conditions and application analytics requirements,
regarding explosive growth of IoT data [125], force us to explore novel architectural
design and further implementations of edge data services. By investigating edge data
services, we consider strategies, methods, mechanisms, and operations for handling and
storing constantly generated data at the network edge. We observe that even within a
single edge analytics system:

• (O1) IoT data are categorized into different model types representing multi-model
data, in particular near real-time streaming data and log-based data, thus, requiring
different storage types and governance policies. They also include different levels of
significance regarding storage and edge analytics. This is especially the case for
critical applications, such as healthcare [126] (e.g., by keeping most important and
relevant data close to the source for effective treating of diseases) and smart manu-
facturing [127] (e.g., considering data significance levels among data streams coming
from industrial equipment for maintenance purposes). Hence, all applications and
sensors do not have equal importance;

• (O2) Different IoT sensors include various errors such as missing data, outliers,
noises, and anomalies, affecting the designs of edge analysis pipelines and cor-
responding different to decision-making processes. In this context, incomplete
and noisy data can be critical, e.g., for traffic-dependent near real-time route
guidance [128], but can be tolerated by intelligent weather forecasts [129];

• (O3) Data from different IoT sensors appear with different data generation speeds,
consequently producing different data volumes for the same time interval. Simul-
taneously, different types of monitored sensors require different data volumes to
make meaningful analytics. In systems like smart cities, it is crucial, for example,
to have big amount of frequent traffic measurements for managing traffic flow in
real-time. On the other hand, due to lower volatility, a weather station requires
much fewer data volumes from its sensors for accurate predictions [36].

Currently, all these highlighted issues are solved outside edge storage services. Solutions
for these issues are not included in existing designs of edge data services because, as one
might argue, such issues are analytic context-specific. However, we argue that they are

52

4.2. Motivational Use Case

generic enough that can be customized and must be incorporated into the design of new
edge data storage systems. These observations indicate crucial changes for enhancing
traditional approaches, which have assumptions on consistent low latency, high availability,
and centralized storage solutions, that cannot be generalized to the edge storage services
and unreliable IoT distributed systems.

4.2 Motivational Use Case

IoT systems produce and rely on huge amounts of sensor-based time series data [51, 105].
In an IoT sensor environment, such as an exemplified university smart building shown in
Figure 4.1, we can observe data workloads from different IoT applications and decide
whether to (i) push data to the cloud data storage, (ii) keep relevant data for local edge
analytics, or (iii) discard data if they are not useful for future analytics. In the first
case, traditionally, all data are transferred to resource-rich cloud data centers where
storage and compute-intensive workloads can be handled, resulting in necessary control
commands for IoT actuators. However, increasing data streams and latency requirements
arising from IoT applications make distant cloud data transfer often impractical. Recent
solutions for making crucial fast decisions in IoT systems have brought up the second
case employing edge nodes.

In an IoT system, such as a university smart building equipped with many sensors
measuring internal subsystems, it is obvious that data from HVAC (Heating, Ventilation,
and Air Conditioning) sensors do not have the same importance as data from smart meters

CT

F

V

KW

CO

Sensors
Smart

buildings Gateway

Cloud API Cloud
layer

Edge API Edge
layer

HVAC

Energy
management

Server
rooms

Laboratory

Weather
station

Single edge analytics system

Limited
storage

Figure 4.1: Traditional single analytics system for university smart buildings use case.
Different shading colors describe sensors that belong to different subsystems and show
corresponding data analytics modules in the edge layer.

53

4. Elastic Edge Data Services for Supporting Decision Making

and solar panels essential for energy management (O1); incomplete data from weather
stations can occur due to external conditions while missing data coming from server room
sensors can be caused by some internal failures (O2); an energy management subsystem
has higher data generation frequency than a laboratory subsystem (O3). Accordingly,
each of these subsystems requires a different approach to sensor data analysis, although
the same edge storage system is used to integrate data for edge analytics. In addition,
limited storage capacities at the network edge prevent us from keeping all generated data.
Several proposed approaches [122, 130] established the data communication between
cloud and edge nodes without an efficient solution to these complex issues.

In the third case, due to the limited underlying network infrastructure, some data can be
filtered or reduced to save bandwidth usage and storage space [105], but impacting later
degradation of Quality of Service (QoS) and causing data integrity problems.

Edge deployed systems must maintain multi-model data. Sensor-based time series might
conform to a common IoT data model, while it is important to support other data types
across different data stores by triggering certain functions, in particular, maintaining
logs for state information of IoT devices/equipment, data exchange, and combination
between different storage types. Considering present multi-model data, resource-limited
edge nodes, and complex data management at the network edge, the next-generation
storage service has to deal with many trade-offs to make sure that the edge analytics is
always served with the most relevant and suitable data. Edge analytics have to meet
certain quality of analytics [131], including amounts of data available, timely decisions,
and certain levels of data accuracy. Therefore, developing such reliable and elastic edge
storage services is of paramount importance. From an architectural design viewpoint, we
must identify which data should be kept at the edge nodes, how long to store them, and
which data processing utilities can assist these problems. We provide a detailed analysis
of elastic storage services in the following section.

4.3 Analysis of Edge Storage Services

Based on the contemporary research, we view an edge storage system including a set of
storage nodes. In a basic model, storage nodes in an edge storage service can interact
and transfer data to each other to improve QoS properties for data applications and
decision-making processes at the edge. To achieve optimized designs for the storage
service management, we analyze requirements from edge data and system characterization
(Section 4.3.1), application-specific analytics context (Section 4.3.2), and edging system
operations (Section 4.3.3).

4.3.1 Edge Data and System Characterization

To provide an elastic edge storage system, storage nodes have to be aware of edge data
workload characteristics. Table 4.1 summarizes key characteristics. Incoming data might
have quality issues due to the presence of missing values or outliers making collected data

54

4.3. Analysis of Edge Storage Services

Table 4.1: Examples of data/system characteristics and impact on architectural design.

Characteristics Impact on architectural design
Incomplete data efficient & adaptive data recovery mechanisms;
Storage availability decentralised monitoring components & data-centric metrics;
Data incidents incident tracing & adaptation mechanisms for data

handling modules;
Different data stores on-demand data integration support & load balancing

optimization.

incomplete. It is important for storage services to decide how to deal with particular
incoming data, with the help of metrics such as data quality, data volume, and frequency.
These metrics can include different statistic techniques for important insights such as
anomaly detection.

The current status of available capacities from storage nodes must always be up-to-date
for efficient management of idle capacities. Hence, the storage service should rely on
system characterization metrics. The combination of different metrics from system and
data collection processes represents composite metrics and it can uncover useful failure
information of underlying infrastructure, leading to proactive decisions on how to collect
and store data.

Having complete end-to-end metrics from data sources to data analytics represents the
main building block of the elastic storage system. An efficient incident analysis mechanism
can be of great importance for recovery and decision-making. To determine the cause
of missing data, the metrics should provide insights into the communication network,
sensor status, or storage activities. For improved detection, authors in [132] provided
incidents characterization in IoT and points of necessary instrumentation for collecting
data for incident analysis.

Example: Data from sensors are collected from smart buildings. Because of the changed
sensor generation rate, some sensor failures can result in the form of outliers and missing
data. Edge data and system metrics indicate several things to storage services: (i) data
quality metrics indicate the persistence of errors and require data recovery before storing
data; (ii) data similarity metrics indicate which correlated dataset can be used as a
baseline for recovery; (iii) sensor generation rate and incoming data volume metrics reveal
sensor failure appearance, leading to necessary adaptation of data frequency; (iv) based
on storage availability, re-routing is performed to the storage node with needed capacity.

4.3.2 Application Context and Requirements for Edge Analytics

From an application-specific context, there are various aspects, such as application
information, processing utilities, and security, related to edge analytics. Increasing
awareness of these aspects can significantly improve overall designs for storage strategies
and data management. We highlight such aspects in this section.

55

4. Elastic Edge Data Services for Supporting Decision Making

Application information

Domain-specific application information can represent direct relation to the storage
system. Different types of application contexts have strong influences on the architectural
design, as shown in Table 4.2. Based on the internal configuration, storage systems map
certain data types to sensors. It is important, from the storage standpoint, to know
which data types belong to a certain application and what is the nature of IoT data
collection, that is, batch or stream data characteristics. Having information about the
nature of data collection enables decisions for performing data processing before or after
storing data.

Another challenge for edge storage is how to adapt to unpredictable sensor workloads in
cases when data collection is related to physical events or periods. Also, fault tolerance
levels can be related to sensor ids, in case of significant applications, requiring replication
of sensor data across interconnected edge storage nodes to ensure availability. Concerning
different data model types, different data stores should be supported, e.g., combining
time series and document-oriented/log data. Accordingly, it is also possible to reveal
hidden relationships by combining different data models (e.g., sensor logs, documents),
but significantly increasing the complexity of data handling and analytics.

Table 4.2: Examples of application contexts and their impact on architectural design.

Application context Impact on architectural design
Data analytics mode
(batch, stream)

dynamic storage configuration policies, plugins for
application & edge-cloud data connectors;

Fault-tolerance level replication mechanism & re-routing strategy;
Data-sensitive applications secure & verifiable support for data storage/exchange;
Multi-model data types runtime customization of data operations & processing

utilities.

Example: Collection and storage of sensor data from IoT devices can differ regarding
storage and application-specific analytics. For instance, instead of constantly streaming
data from smart building subsystems, IoT sensors can be set to push logs every 30
minutes to an edge storage node. Specifying information about data collection nature in
applications, like smart building monitoring and HVAC stream data, can be forwarded
to data cleaning or anomaly detection mechanisms. If a certain level of data sensitivity is
attached to data from the laboratory, then before storing data, an additional protection
level is attached through encryption algorithms, and limited access to stored data is set.

Data processing utilities

Novel edge storage services should be supported by different possibilities of data processing
utilities that are nowadays overlooked in storage management research. Such possibilities
can include data cleaning techniques, anomaly detection, data normalization, and different
data recovering techniques for missing values and outliers that often appear in distributed

56

4.3. Analysis of Edge Storage Services

IoT systems. Further, providing data approximation methods and codecs can reduce data
dimensionality and numerosity while retaining essential features of interest for effective
data analytics [133].

Further, predictive maintenance represents another perspective. Performing estimations
on future generated data volumes and availability of storage capacities, some proactive
actions can be taken to improve storage service at the edge such as (i) deciding when
historical data should be discarded or moved to cloud repository; (ii) redirecting/moving
sensor data to a storage node with idle resources.

Example: In smart buildings, incomplete data might occur for many reasons, such
as monitoring system failures, sensor failures, and external environmental conditions.
However, no common techniques can be appropriate for different data sources [51]. In
sensor-based time series data, one technique can be suitable for high volatile data values,
but not good for non-volatile and stationary data [112].

Verification and auditing support

Incoming sensor data at the edge often contain sensitive information about the monitored
system, raising the importance to address data reliability within storage services. Security
vulnerabilities of sensitive sensor data are overlooked in today’s IoT data exchange and
storage posing important challenges for their handling. Another important aspect is
to audit flows of data into the storage and related analytics. Thus, future storage
service architectures must consider building verifiable and secure storage of large-scale
IoT sensor data [134]. Integrating blockchain technology can enable distributed and
decentralized storage services on heterogeneous edge nodes (IoT devices, edge gateways,
micro data centers). However, increased data generation represents a great barrier for its
integration with blockchain technology [135]. Therefore, careful architectural designs for
the integration between blockchain and storage must be done in the view that blockchain
is only used for selective types of data for verification and auditing purposes.

Example: Smart building systems manage sensitive data, such as laboratory records or
renewable energy traces important for smart grids. Integrating blockchain technology in
storage services systems can ensure authorized access to data, distribute sensitive data
among storage nodes, and trace changes of data.

4.3.3 Edging System and Service Operations

Elasticity operations and constraints

To provide reliable edge data storage, elastic storage service should have predefined
operations such as (i) the change in sampling frequency, (ii) data filtering operation, (iii)
functions for efficient data integration from multiple sensors, (iv) data sharding operations
and (v) data re-routing to interconnected edge storage nodes to avoid storage overhead
or network bottlenecks. Further, elasticity operations can be directly dependent on a set
of Service Level Objectives (SLOs) for a specific application. Based on a set of objectives,

57

4. Elastic Edge Data Services for Supporting Decision Making

multi-objective optimization algorithms can be applied to define a set of appropriate
solutions. The aim of the multi-objective optimization module is to recommend a set of
operations for storage services based on system constraints and data characteristics, and
thereby maximizing possibilities of data-driven IoT decisions at runtime.

Example: Smart building systems can include a multi-objective optimization algorithm
to deal with QoS conditions for response time, storage costs, available resources and data
quality, triggering different aforementioned elastic operations.

Data importance

IoT systems specify different levels of importance for different types of monitored sensors.
From a storage viewpoint, such sensor types can be coupled with additional services, such
as outliers and anomalies detection or data cleaning, before passing the data to the storage
or analytics. IoT systems can change the data importance at runtime (context-aware
relevance). Some system functionalities become critical in certain periods of year or
day/night time, requiring elastic adaptation and support from edge storage services.

Example: Data sources with less importance can utilize elastic operations such as stream
filters to omit redundant data. If data are redundant (e.g., temperature measurements
in smart building offices do not change often), a dynamic monitoring frequency can be
set [71], leading to increased data generation in case of high data volatility, and thus
impacting storage services.

4.4 Engineering Principles for Edge Data Services
Based on aforementioned challenges and examples regarding three important aspects of
distributed edge storage nodes, namely, edge data/system characterization, application
context and edging operations, we present seven principles (P) as guidelines for engineering
of elastic edge storage services.

P1: Define and Provide Needed Metrics

To enable efficient customization and adaptation among elements of edge storage systems,
it requires a clear definition and flexible monitoring of end-to-end metrics regarding data
workloads, application context, and system activities.

How: Figure 4.2 shows end-to-end metrics that can assist in elastic edge storage man-
agement. We present end-to-end metrics in 4 stages of the data lifecycle, namely, data
collection, data preprocessing, storage service analysis, and data analytics. The stor-
age system must also allow the definition of new metrics at runtime, depending on
application-specific requirements.

Tooling: There are many tools for monitoring cloud systems, e.g., Prometheus1, and
Fluentd2, but few able to monitor edge data metrics. These tools should be equipped with

1https://prometheus.io/
2https://www.fluentd.org/

58

4.4. Engineering Principles for Edge Data Services

Data
Collection

End-to-end Elasticity Metrics
 Data generation

rate
 Data volume/size
 Transmission

reliability
 Data quality

 Data sensitivity
 Application

requirements
(latency,
accuracy)

 Dependencies

 Storage
capacities

 Storage service
availability

 Storage service
costs

 Data volatility
 Prediction

accuracy
 Data correlation
 Time/space

complexity

Edge Storage
Services

Data
Preprocessing

Data
Analytics

Monitoring

Figure 4.2: End-to-end monitoring metrics of elastic edge services through four data
stages. Managing data in each stage can depend on metrics from other stages, e.g., data
analytics might depend on metrics collected before data are passed to storage nodes.

additional features including pluggable components for edge systems, such as fluentbit3,
providing AI support and tracing instrumentation, as a promising solution for providing
end-to-end metrics for elastic storage services.

P2: Support Application-specific Requirements

Based on sensor-specific metrics and relevancy, we can combine different solutions to
deliver appropriate data to local analytics, while meeting application conditions. For
example, sensor data have requirements to be clean, complete or normalized before stored
and analyzed. Further, customization for secure and verifiable storage is required for
applications dealing with sensitive data.

How: As shown in Figure 4.3, depending on application information, different sensor data
have corresponding data flow routed through the edge architecture to appropriate edge
analytics, namely, descriptive, predictive, or prescriptive. Interconnected storage nodes,
with features including data recovery and edge storage management mechanisms, ensure
access to the relevant data at the right time for different purposes. An algorithm repository
contains a set of predefined processing utilities, which usage and order are application-
specific and dynamically set at runtime in the elasticity management component. In
addition, the blockchain integrator component can capture certain types of application-
specific data and pass them to the edge blockchain network for verification and auditing.

Tooling: A repository of available and pluggable microservices can speed up the DevOps
of storage services by supplying needed utilities. Different microservices can be used to
enable elastic activities, such as data cleaning, normalization, and data integration [94].
To keep relevant and complete data in space-limited storage, nodes might incorporate
an adaptive algorithm for efficient edge storage management [51] and an automatic
mechanism for recovery of incomplete datasets [49].

3https://fluentbit.io/

59

4. Elastic Edge Data Services for Supporting Decision Making

Descriptive

Data (De-)
Compression

Transfer
from/to Cloud

Predictive

Edge Storage
Management

Data
Recovery

Application
Information

Elasticity
Management

Sensor
Data

Algorithm
Repository

Blockchain
Integrator

IoT EDGE CLOUD
Storage Nodes Local

Analytics

Prescriptive

Processing
Utilities

Processing
Utilities

... ...

Sensor
Data

Sensor
Data

Anomaly
Detection

Incident
Analysis

Data
Normalization

Data
Preparation

Data
Cleaning

Figure 4.3: Application-specific data flows through a new edge architecture with corre-
sponding components. Different arrows show several scenarios of sensor data flows across
edge layer, IoT-edge and edge-cloud continuum, based on supportive modules (yellow)
for edge data services, algorithm repository and blockchain integrator.

P3: Enable Adaptive Data Handling

From a software management viewpoint, we need to cope with heterogeneous data
workloads including changing data streams, batch transfers, QoS critical requirements.
Also, storage services should ensure that stored data are always available, relevant, and
complete, i.e., keeping data integrity by utilizing different system and data operations.

How: In this context, critical software technology running on the edge can play an impor-
tant role in storage resources abstraction, supporting communications, and configuring
suitable data handling features and on-demand data transfers. Techniques for auto-switch
data handling algorithms/components should be explored (e.g., data reduction [105]).

Tooling: Fogger4 could be used to support dynamic allocation and contextual location
awareness of storage resources in a distributed environment, and featuring blockchain
technology. Microservices-based design concepts, such as Edgex5 open-source platform,
might enable decentralized and independent data handling as well as reliable data
integration supported by on-demand data services.

P4: Highly Customized System Bundling

Edge storage features should be highly customized and application-aware regarding data
and system characterization. Considering data workloads and deployment conditions,
traditional inflexibility in software modules bundling can produce over- or under-bundled
features for supporting edge application analytics. Thus, flexible storage configurations
need to meet deployment situations.

4https://fogger.io/
5https://www.mainflux.com/

60

4.4. Engineering Principles for Edge Data Services

How: Based on application-specific information and internal constraints (e.g., available
capacities and performance of resources), the build and deployment process [136] should
bundle only components to match these constraints for the right infrastructures. This
forces us to develop an optimizer for bundling and deploying different software modules.
As shown in Figure 4.3, different utilities and software modules should be available for
customized bundling.

Tooling: Existing deploying tools like Docker Compose6, Ansible7, and Terraform8, allow
us to bundle and deploy a stack of services but they do not enable needed optimization.
This requires us to leverage existing work and develop novel algorithms based on edge
node characteristics [137]. Developed algorithms should select application-specific and
customized services to build dependent components (e.g., creating a snap on Docker,
while selecting components based on application-specific requirements).

P5: Runtime Software-defined Customization

Different inputs, such as application information and data workload characteristics,
have to be combined to support runtime customization of elastic operations and data
processing utilities. A way of combining these inputs must enable dynamic, software-
defined components for the overall system management. A multi-objective optimization
mechanism should enable dynamic prioritization of IoT data and condition evaluation
from SLOs at runtime and thus would impact provided storage service.

How: Figure 4.4 illustrates potential control flow for elastic storage services. It incor-
porates a loop for managing internal storage systems initially taking valid application
information and current storage system metrics. To evaluate a set of defined objectives,
dynamic workload characteristics are combined with static knowledge (e.g., predefined
elastic operations and processing utilities). To decide situational trade-offs for data
quality and storage capacities, and utilizing edging system operations, we need to derive
an optimization strategy for customized storage with core software-defined APIs for data
management and service operations.

Tooling: We need to provide approaches of dynamic configuration, runtime code change
(e.g., model@runtime [138]), and services mesh, to combine different inputs from dis-
tributed storage nodes. The Kinetic Edge SDN9, could enable efficient load balancing
between distributed storage locations. Multi-objective optimization of customized ob-
jectives, e.g., data quality and storage capacities, can be well addressed by leveraging
proposed strategies to optimize data placement in multi-cloud storage [139].

P6: Support IoT-Edge Continuum

This principle looks at impacting constant data flows between IoT systems and edge
storage services, while supporting underlying protocols. According to edge storage

6https://docs.docker.com/compose/
7https://www.ansible.com/
8https://www.terraform.io/
9https://www.vapor.io/kinetic-edge/

61

4. Elastic Edge Data Services for Supporting Decision Making

 SLOs
 Analytic accuracy
 Data quality, etc.

Set of
objectives

Multi-objective
Optimization

Set of
solutions

Elasticity
Controller

Set of
operations

Control
commands

Elastic
operations

Data workload
characteristics

Application
information

Data
processing

utilities

Core APIs for
storage services

...
...

...
...

Load balancing

Adapt data freq.

System metrics Add nodes

Re-routing data

Replication

Actuator

Figure 4.4: Elasticity management determining customized data flows and storage services
at runtime in proposed elastic edge storage architecture.

performances, it requires triggering different actions with changing data generation
frequency on-demand.

How: Both IoT and edge nodes require developing an edge-IoT connector to control
data flows that can often be unpredictable. This connector should be able to (i) discard
incoming sensor data (e.g., in the case of bad data quality with outliers or missing
values); (ii) apply different sampling commands for collecting only relevant data; (iii)
trigger actions for turning off/on sensors in producing data, highly impacting the overall
performance of edge storage services.

Tooling: From a data viewpoint, novel mechanisms can be considered for allowing IoT
sensors to securely receive and perform actuation requests from edge nodes, while from
a programmability viewpoint supporting actuation capabilities for remote IoT device
programmability [140] (e.g., building standard actuation APIs). New design patterns for
data pipelines should be implemented to control unpredictable data flows and prevent
low-quality data.

P7: Support Edge-Cloud Continuum

This principle looks at inter-operation and data transmission between edge and cloud
storage systems (see Figure 4.3). Despite the advantages of edge nodes, it is obvious that
for many applications, cloud repositories still have to keep large datasets for complex
data mining and big data analytics [141]. Thus, we need to support efficient and secure
data transfer of large data sets. With an increasing number of data-intensive applications
and having bandwidth constraints, it will be crucial to reduce data traffic between edge
and cloud. Further, once large datasets are available in the cloud, machine learning
models can be trained and then deployed at the edge for better decision-making.

How: For efficient edge-cloud cooperation we need to build an edge connector to the cloud,
supporting: (i) operation viewpoint featuring timely techniques for data approximation,
(de)compression and encryption/decryption; (ii) network viewpoint featuring mechanism

62

4.4. Engineering Principles for Edge Data Services

to avoid excessive data traffic through limited network infrastructure; (iii) analytics
viewpoint featuring coordination mechanism for consistent ML models employing elasticity
and deployment strategies.

Tooling: The approaches of push and pull data on-demand can be investigated for edge-
cloud data transfer. Impact of symbolic data representation [133] can be considered as a
good starting point to avoid excessive data traffic. There is a need for a model to support
secure data migration among multi-location data stores (such as OceanStore [142] utility
infrastructure model). Also from an analytics viewpoint, different algorithms and metrics
for scheduling and synchronizing ML model updates are required [119].

63

CHAPTER 5
Deployment of Edge Video

Analytics Systems

In this chapter, we show two deployments of edge video analytics systems, namely, (i)
increasing traffic safety with real-time edge analytics and 5G, and (ii) data locality-aware
edge analytics placement.
First, we show the potential of edge computing and modern communication technologies
such as 5G in a practical real-world application, i.e., to increase traffic safety. We propose
InTraSafEd 5G (Increasing Traffic Safety with Edge and 5G), a system for detecting
pedestrians and cyclists in drivers’ blind spots at critical traffic intersections and reporting
their presence to drivers. Detection of pedestrians is performed by applying an object
detection algorithm on video frames streamed from cameras that are attached to edge
devices, and integrated on traffic lights. Detection results are delivered in real-time
using low-latency 5G communication. InTraSafEd 5G is designed to provide audio and
visual notifications on the drivers’ mobile phones, thereby providing early warnings about
critical situations in the driver’s path.
Based on the first deployment, in which we discuss and demonstrate an edge analytics
prototype that enables real-time execution of critical tasks (independent of input data that
are always available locally), we further consider a scenario for self-adaptive placements
of edge analytics based on data locality. We aim to efficiently place the critical analytics
respecting the location of the user-required input dataset. To ensure efficient placement
of on-demand analytics considering data locality and lower analytics execution time, we
propose SEA-LEAP, a framework for Self-adaptive and Locality-aware Edge Analytics
Placement, featuring:

• a new architecture, enabling the exploitation of data locality based on the tracking
mechanism that manages event-triggered registration of dataset movements across
different edge nodes;

65

5. Deployment of Edge Video Analytics Systems

• a generic control mechanism, allowing on-the-fly adaptation and autonomous
placement of on-demand analytics to node locations storing required input datasets;

• a placement optimizer, enabling on-demand analytics placement to the most
appropriate dataset location that minimizes overall request execution time.

We first present the deployment of an edge analytics system for increasing traffic safety
in Section 5.1. Then, we present the deployment of self-adaptive and data locality-aware
edge analytics placement system in Section 5.2.

5.1 Increasing Traffic Safety with Real-Time Edge
Analytics and 5G

The motivational scenario is illustrated and describe including design requirements and
properties for the prototype implementation in Section 5.1.1. Section 5.1.2 describes
the proposed architecture design with two main parts, namely, computation and com-
munication components, ensuring necessary traffic safety requirements and properties.
Technology evaluation of the proposed solution is described in Chapter 6.

5.1.1 Background on Time-Critical Traffic Safety Systems

Ensuring road traffic safety represents an important challenge [143]. According to [144], at
least 51300 pedestrians and 19450 cyclists were killed on EU roads between 2010 and 2018,
accounting for deaths among pedestrians and cyclists for 29% of all EU road deaths, as
reported by the European Transport Safety Council (ETSC). Causes of accidents involve
distractions and poor visibility. Early warning systems can improve traffic safety by
promptly notifying drivers about critical situations (e.g., pedestrians or cyclists in drivers’
blind spots [143]), allowing them to take actions to avoid accidents [145]. However, since
drivers’ brake reaction time is measured around 1500ms on average [146], early warning
systems must detect and send timely notifications respecting strict latency constraints.

Motivational scenario

In the last 10 years, the city of Vienna has experienced around 50000 casualties from
traffic accidents, resulting in more than 100 deaths 1. Many casualties are caused due
to blind spots in the drivers’ sight or distractions while driving, causing inabilities to
brake on time. Figure 5.1 illustrates our motivational scenario. We consider a typical
example of a crosswalk situation on the intersections, in which both drivers and users
(e.g., pedestrians, cyclists) can not detect potentially threatening situations on time. Such
situations can include roadside obstacles and conditions that can reduce traffic safety
such as (i) roadside bus stations and buses covering cyclists approaching the intersection,
(ii) bushes and trees hiding children and animals that are moving towards the crosswalk

1https://www.wien.gv.at/english/administration/statistics/traffic-accidents.html

66

5.1. Increasing Traffic Safety with Real-Time Edge Analytics and 5G

Figure 5.1: An example traffic scenario to illustrate the critical situations when pedestrians
and cyclists appear in the driver’s blind spots (e.g., behind roadside bus station, bushes).

(e.g., a child running after a dog, out of parents’ sight), (iii) bad weather conditions
causing poor visibility (e.g., fog, heavy rain). Also, pedestrian-vehicle conflicts can often
happen due to unexpected behaviors of pedestrians near crosswalks, such as sudden
acceleration and deceleration [147].

To increase traffic safety and support drivers and users on critical intersections to avoid
accidents, we consider (i) exploiting modern AI and computer vision techniques to
detect critical situations and, (ii) exploring possibilities of edge computing paradigm and
emerging 5G network connection. We design our traffic safety solution in the scope of
InTraSafEd 5G project, funded by the city of Vienna to explore 5G use cases for a better
connected smart city.

Design requirements

We identified a specific intersection in the city of Vienna that is considered critical for
traffic accidents, due to roadside obstacles and blind spots. Swarco Futurit, a Vienna
traffic infrastructure provider, enabled access to empty traffic lights chambers, in which
the corresponding edge hardware is installed. We consider the following properties and
requirements in the InTraSafEd 5G design:

• Low latency. Low latency is an important requirement to increase traffic safety,
since delivering timely notifications to drivers is important to avoid accidents. Total
latency is given by the sum of (i) computation time, (ii) communication (data
transfer or message) overhead, (iii) reliability overhead. The sum of these values

67

5. Deployment of Edge Video Analytics Systems

must respect the drivers’ average brake reaction time [146], therefore notification
latency must be ranging in the order of tens to hundreds of milliseconds [18].

• Privacy preservation. Many edge sensors and devices can collect sensitive data
about people (e.g., people’s faces). In this context, any network transfer of sensitive
data should be minimized or anonymized (e.g., through aggregation, numbers).
Compared to traditional scenarios of sending sensitive data over the network to
the cloud, we should ensure that no sensitive data are stored or sent over the
network [148].

• Space limitations. Edge-relevant hardware must be deployed close to critical
intersections, respecting urbanistic space constraints. In our setup, the city of
Vienna infrastructure provider provided access to empty traffic light chambers for
the deployment of edge hardware. Provided traffic lights chambers can be found in
most of the traffic infrastructures worldwide [149].

• Low cost. Edge hardware (e.g., AI device, camera) has to be installed on many
crossroads of a metropolitan area. Therefore, hardware costs must be contained. In
our use case, the traffic infrastructure provider of the city of Vienna estimated the
costs for a single edge node installation to be in the range of a few hundred euros.

5.1.2 System Design

Figure 5.2 shows an overview of the proposed architecture design, based on the challenges
and requirements identified in Section 5.1.1. We illustrate two main components, namely:

Computation component is responsible for the real-time processing of data coming
from edge sensing devices. It includes both hardware and software parts. The hardware
part includes adapted configurations of edge devices, considering space requirements,
and plugged cameras to constantly monitor critical intersections and crosswalks. The
software part includes edge processing, which processes video frames using deep learning
object detection modules. Object detection workflows are based on a neural network,
trained to detect pedestrians and cyclists.

Communication component is responsible for real-time delivery of the edge processing
output that is critical for early warnings of drivers. It includes both network and
application parts. The network part includes a mechanism to efficiently and timely
broadcast such information to a multiple and a dynamic number of vehicle drivers
approaching the intersection. The application part includes implemented modules for
tracking the vehicle movements as well as the application interface with warning features.

In Figure 5.2, Step 1 shows vulnerable road users (e.g., pedestrians and cyclists) captured
in video frames, and collected by a deployed traffic camera. Input video frames are
constantly analyzed by the edge processing module in Step 2, searching for target users
in the critical crosswalk or intersection area. Once users approaching this monitored
area are detected (Step 3), a notification message is generated in Step 4. The message is

68

5.2. Data Locality-aware Edge Analytics Placement

camera

video frames

edge

processing

detected

objects

notifications

COMPUTATION COMPONENT

COMMUNICATION COMPONENT

1

2

3

4

5

Figure 5.2: An overview of the architecture design for increasing traffic safety with edge.

then forwarded to an app installed on the driver’s mobile device, which shows visual and
audio notifications (Step 5).

Regarding the privacy property, the video frames, captured by cameras, are analyzed
immediately at the edge device, ensuring that sensitive data are neither transferred nor
stored over the network. Only the output of data analytics, i.e., a number of objects
detected (i.e., pedestrians, cyclists, or animals), is transmitted to drivers’ mobile devices.
Technology evaluation and design choices for the prototype deployment are shown and
discussed in the evaluation Chapter 6 in detail.

5.2 Data Locality-aware Edge Analytics Placement

For the second deployment use case, we propose SEA-LEAP framework for self-adaptive
and data locality-aware edge analytics placement. We first describe the importance of
data locality in Section 5.2.1 and the motivational use case in Section 5.2.2, illustrating
a problem of tracking data movements and timely placement of critical on-demand
analytics. In Section 5.2.3, we propose SEA-LEAP system design, while tracking and
control components are detailed in Section 5.2.4 and Section 5.2.5, respectively.

5.2.1 Importance of Data Locality Exploitation in Edge
Environments

Modern IoT applications such as public safety video surveillance [150], predictive mainte-
nance in smart manufacturing [151], and traffic management in smart cities [152], are
characterized by strict latency requirements. Due to the rapidly increasing number of

69

5. Deployment of Edge Video Analytics Systems

IoT sensing devices, data production is growing exponentially [153], with negative effects
on the latency of analytics required by IoT applications.

Although edge computing, i.e., moving cloud processing closer to data sources, has been
proposed as a solution to address these issues [154], the rapidly growing amount of data
produced at the edge affects traditional centralized data collection and processing. Data
can be transferred and replicated due to (i) limited storage capacities [50]; (ii) edge
failure probabilities [155]; (iii) meeting certain SLOs (e.g., data loss tolerance [156]); (iv)
workload balancing [157]. Consequently, data can reside in locations different from where
they were initially produced.

Typical examples are edge video analytics applications. Performing video analytics (e.g.,
object detection to extract specific information of video frames) close to the source of
data (e.g., on edge servers such as traffic cameras or micro data centers) is considered as
the killer app for edge computing [73]. For example, video analytics on traffic footages
of a specific area could be submitted to detect a suspect’s vehicle. However, sampled
footage frames from a traffic camera system can be stored at locations different from
the source node to ensure fault tolerance, affecting the latency of on-demand analytics.
This problem is present in other event-driven scenarios, where critical decision-making
processes strongly depend on the timely placement of analytics requests, such as finding
lost children or pets [150], and failure prevention in smart manufacturing [151]. Therefore,
making self-adaptive analytics placement to the most suitable location is an important
step toward improving the overall latency of decision-making processes.

In typical placement strategies for data processing applications available in the literature,
researchers focus on traditional centralized data collection and analytics solutions [158, 22],
or placing data processing based on resource-cost trade-offs [159], but do not discuss
critical latency requirements of such analytics applications. Others propose strategies
for latency-aware placement configurations of data stream processing applications [160]
and low-latency data management on the distributed edge [161]. Still, data movement
tracking and locality-awareness for scheduling on-demand analytics across distributed
edge infrastructures are currently unsolved problems [162, 163].

5.2.2 Background on Data Locality in Edge Analytics

Motivational scenario

In the context of edge nodes, we consider our InTraSafEd 5G project, i.e., Increasing
Traffic Safety with Edge and 5G (presented in the previous Section 5.1), as the motivational
example described in Figure 5.3. It aims to improve traffic and pedestrian safety through
video analytics running on edge nodes, deployed near data sources (e.g., urban area,
traffic infrastructure). Once data are collected, different analytics applications can query
collected data. Example of these analytics ranges from (i) locating lost children or
pets [150], (ii) timely locating suspects, (iii) finding a vehicle suspected of violating
rules in captured footages (e.g., by recognizing license plates captured for accessing
restricted central business districts, low emission zones), in a smart city. In such on-

70

5.2. Data Locality-aware Edge Analytics Placement

E1

E2

E3

Data collection Data replication

Mobile
communication

Figure 5.3: An example smart city scenario to illustrate the problems of (i) tracking
dataset movements/replications due to high edge failure probabilities, and (ii) timely
placement of critical on-demand video analytics.

demand scenarios, critical decision-making processes strongly depend on the strict latency
execution of edge analytics requests using specific input datasets.

However, edge servers can fail to execute analytics services for different reasons such as
limited resources, power outages, or network failures [155]. Consequently, in the context
of edge servers, it becomes necessary to replicate relevant data and services to other
nodes (black dashed arrow), to meet SLOs, e.g., service and data availability. Based on
calculated failure probabilities, some datasets can be replicated (partially or completely)
to different locations to avoid data loss or interruption of running analytics services. To
meet the low-latency requirements of on-demand analytics [164] (e.g., finding suspects),
they should be placed at the same node where the dataset is stored to reduce the
impact of network latency. However, in a geographically distributed edge infrastructure,
replication causes the required dataset to be present in location(s) different from where it
is produced. Consequently, our challenges are to (i) keep track of datasets, and identify
where they are located at a specific time point; (ii) identify which node location is the
most suitable to reduce the latency of analytics requests. Inspired by the InTraSafEd 5G,
we consider its benefits for running on-demand analytics on heterogeneous edge servers
such as Raspberry Pi roadside devices with cameras attached to smart traffic lights.

Definition 5. On-demand data analytics represents data processing applications that
are submitted to a computational infrastructure I in response to specific user requests R.

The main characteristics of on-demand data analytics are: (i) they refer to specific input
datasets [151], and (ii) they have low-latency requirements [164]. In this work, on-demand
data analytics are represented as container-based applications running services that
process input data and can be placed in different nodes of computational infrastructure
(as in [165] and [166]). The input of on-demand analytics is a finite dataset that can be
stored in different locations. We focus on a set of sampled video frames generated from
video-camera systems.

71

5. Deployment of Edge Video Analytics Systems

Locality-aware edge analytics placement

Edge computing is a paradigm where computation is performed on edge nodes, deployed
near data sources. Edge computing is the key to exploit data locality, i.e., processing
data closer to its origin, instead of collecting and processing data far from its source [124].
Data locality is considered of paramount importance to meet low-latency requirements
of on-demand analytics [167, 168]. However, identifying the correct dataset location to
timely perform processing in the distributed edge environments is a challenging issue
due to the possible data transfers and replications. Therefore, we introduce SEA-LEAP,
a new framework allowing users and developers to easily deploy on-demand analytics
applications without knowing the current location of the required datasets. Once required
datasets are located by SEA-LEAP, on-demand analytics are automatically deployed
to the most appropriate edge nodes, allowing analytics requests to meet low-latency
requirements and significantly improving decision-making processes.

5.2.3 SEA-LEAP System Design

This section introduces a high-level architecture model overview of the SEA-LEAP
system, aiming to illustrate the main components and steps for achieving self-adaptive
analytics placement at the edge. The design concept of SEA-LEAP is driven by the
following properties for on-demand edge analytics placement, namely,

• Data locality-awareness: as shown in the motivational scenario, data can change
its locations over geographically distributed and heterogeneous edge nodes for
different reasons, making it challenging to exploit data locality. Therefore, the
framework should be able to keep track of dynamic data movements and enable
efficient locality-aware data management.

• Autonomy: on-demand analytics requests, as shown in the motivational scenario,
often have low-latency requirements, making it difficult to timely identify the node
minimizing overall request execution time. For this reason, the framework should
be able to (i) find the most appropriate node location for analytics placement and
(ii) handle numerous requests on time, with little or no human intervention in
the deployment process. To this end, we need to enable autonomous analytics
placements.

• Genericity: the computational edge infrastructure can be heterogeneous regarding
both hardware resources and software configurations. Thus, the framework design
should be generic and applicable to work on top of existing systems by customizing
the logic of proposed components and services, improving the overall reusability.

Overall execution time represents the completion time of the user analytics requests,
which includes execution of tracking and control mechanisms to find the location that
guarantees the lowest latency. Figure 5.4 provides an overview of the proposed SEA-
LEAP architecture. We envision the on-demand analytics placement scenario based on

72

5.2. Data Locality-aware Edge Analytics Placement

data locality. To manage data locality-awareness with autonomous analytics placements,
we illustrate three main parts, namely:

Edge sites represent sets of geographically distributed and resource-limited edge nodes
capable of executing on-demand analytics on data coming from IoT devices. IoT devices
constantly generate data, which are transmitted to the edge infrastructure for temporary
storage and future analytics.

Tracking mechanism is a component used for event-triggered registration of datasets
and for tracking their future movements. It includes a monitoring service and meta-dataset
that stores location-related details about datasets, enabling their dynamic tracking in
the distributed edge environments. We focus on datasets with fixed sizes, which are
generated, processed, and stored at the edge for future analytics. This is typical in
storage-limited edge nodes since in many cases it is enough to have a subset of data to
preserve the analytics accuracy [169]. To minimize overall completion time, the control
mechanism can trigger adaptive data movements.

Control mechanism is a component performing placement of on-demand analytics. It
contains two main sub-components: the meta scheduler and the placement optimizer. The
meta scheduler receives the description of on-demand analytics with the requested dataset
name, and communicates with both the meta-dataset and the placement optimizer. The
placement optimizer computes the most appropriate location for on-demand analytics
to minimize overall execution time. Finally, the meta scheduler performs the actual
placement to a target node and commands the analytics execution.

In Step 1, data generated from different IoT sensing devices are transferred to edge nodes,
where they can be processed or stored for later analysis. In Step 2, datasets can be moved
or replicated to other nodes due to different reasons such as fault tolerance. Any dataset
generation or its replication or movement are registered and updated constantly within

Figure 5.4: SEA-LEAP architecture overview.

73

5. Deployment of Edge Video Analytics Systems

the tracking mechanism (Step 3). For each dataset, current location-related details are
stored in a database called meta-dataset. Meta-dataset can include information such as
dataset id, dataset name, corresponding cluster, location path, and data size. Once a
user submits the request description (Step 4), the meta-scheduler initiates the automatic
placement adaptation. In Step 5, the meta scheduler extracts the required dataset name
and retrieves location-related details of the required dataset from the database. We
assume that a user knows the target dataset id or name needed as an input for requested
analytics. Some of the proposed solutions include (i) access to a list of already generated
and existing dataset names (e.g., based on a dataset catalog explained in Section 5.2.4),
(ii) a consistent and regulated, easy-to-remember naming of datasets.

Considering that (i) requested dataset can be present in multiple nodes and (ii) different
nodes can comply with analytics requirements (e.g., resource capabilities), in Step 6, the
meta scheduler queries the placement optimizer to find the most appropriate location for
analytics among node location candidates. Finally, the analytics application is placed
to the most appropriate node (Step 7). The proposed SEA-LEAP follows the service-
oriented architecture (SOA), featuring multiple parts and services that can be maintained
independently. The following subsections describe all proposed parts in detail, while
Table 5.1 lists the main notations used in our approaches.

Table 5.1: SEA-LEAP main notations and definitions.

Notation Description
α An analytics application that requires input data.
dloc Variable representing the current dataset location.
dname Variable representing name of the dataset during the

data generation at the data source
dma A data management action (e.g., replication).
metadb Meta dataset database with location-related info.
KB A knowledge base containing edge-relevant information.
rcvmsg Variable containing request description for data mgmt.
rcvf Description containing the request for analytics placement.
Lap The most appropriate location for analytics placement.
L Matrix storing about node candidates for the placement.
D The set of datasets.
N The set of locations.
Λ The set of nodes where dataset d is stored.

l(ni, nj) Latency of network connection between ni and nj .
b(ni, nj) Bandwidth of network connection between ni and nj .

hops(ni, nj) Number of network hops between ni and nj .
size(d) The overall size of a dataset d.
inf_time An average inference time on a target node.
no_frames Number of image frames in a target dataset d.

74

5.2. Data Locality-aware Edge Analytics Placement

5.2.4 SEA-LEAP Tracking Mechanism

Based on the architectural model, we describe the tracking mechanism that is focused on
data management and registration of edge data movements. Figure 5.5 shows SEA-LEAP
agent-based monitoring service, which incorporates an event-triggered registration of
changes of data locations and publish/subscribe-based tracking of data movements, while
Algorithm 6 shows pseudocode and the concept behind the agent-based monitoring.
Regarding the data locality-awareness and autonomy properties, an autonomous software
agent is employed on top of each node, constantly monitoring and acting upon data
management events. Location-related details are stored in the meta-dataset database
indicating where the datasets are currently available and accessible. The event-triggered
data registration mechanism (Figure 5.5a) consists of several consecutive phases:

Activation of node agents. Every node has an agent listening to a known port (line
1, Algorithm 6). The while loop (line 2) serves one client request for data management
action. This phase is executed only once on each node and used in all the other phases.
The received description of a data management action triggers the following phases.

Request for data management. In this phase, different requests for data management
can be initiated (lines 3-4). We define data management as any data manipulation process
including (i) generation of a new dataset, (ii) dataset replication or movement. Data
management requests employ location-related details about data and can be initiated
from (i) meta scheduler (Section 5.2.5), (ii) edge nodes, (iii) edge providers, or (iv) other
incorporated mechanisms maintaining edge systems (e.g., load balancing, replication,
fault tolerance).

Location resolution. In this phase, based on the target dataset, the location details
are either (i) produced for newly generated datasets or (ii) checked in the meta-dataset
before further actions. In the first case, a dataset is generated and stored in an edge node.

(a) Event-triggered data registration (b) Pub/sub based data tracking

Figure 5.5: SEA-LEAP monitoring service including (a) registration of changes of data
locations and (b) tracking data movements due to data management events.

75

5. Deployment of Edge Video Analytics Systems

Algorithm 6 Agent-basedDatasetRegistration

1: Listening for data management requests
2: while TRUE do . serving one client request
3: Connect to client
4: parse(rcvmsg) . analyse received message
5: datamgmt(dma, dname, dloc) . data management applied
6: Update metadb, setting new node location dloc for given dname
7: Disconnect from client
8: end while

Details about dataset location are saved in the meta-dataset and partially in the dataset
catalog (Figure 5.5b). Dataset catalog (DC), a lightweight key-value store contains pairs
of all generated dataset names and initial locations where they are created (Step 1). It
supports the submission of the user’s analytics request (see Section 5.2.5), and can be
accessed from meta-server or keeping a synchronized copy locally. In the latter case (ii),
the required dataset already exists and meta-dataset database is queried, if needed, for
retrieving location details.

Data management. In this phase, requested data management action (dma) is per-
formed (line 5). Node agents complete data management requests. A trivial example
datamgmt(fetch, dat_x, n1) would fetch dataset dat_x from location n1. This phase
is designed in a generic way, so it can also be adapted with other data management
operations by edge infrastructure providers or deployed edge systems.

Location update. Once the previous data management actions are done, it is required
to update new information in the meta-dataset. In this phase, a new connection to the
meta database is established and corresponding dataset entries are updated (line 6).
Once the database is updated, the source node of the corresponding dataset is notified
via the pub/sub (publish/subscribe) channel enabling data movement tracking.

In case of failures, error messages will be returned in each phase. Furthermore, Figure 5.5b
shows the pub/sub based tracking of data management. First, as shown in the location
resolution phase, DC stores existing and unique dataset names (Step 1) included in the
Knowledge Base (KB). KB represents prior obtained and edge-relevant details such as
edge-specific network topology, node characteristics, and analytics benchmarks. They
provide a collection of information necessary for efficient analytics placement (explained
further in the evaluation Section 6.3). Edge node locations and produced datasets can
be numerous and highly distributed. Thus, regarding the scalability of the tracking
mechanism, the monitoring service includes a pub/sub messaging system in which every
edge node (n1, n2, ..., nn) can be subscribed to topics representing dataset names or ids
that were initially produced at these nodes (Step 2). Once the dataset location is changed
in the meta-dataset during the location update phase, the meta-broker publishes the
change to a specific topic (Step 3). As a result, each node has information about the
current location of its datasets, facilitating further edge data management actions. We

76

5.2. Data Locality-aware Edge Analytics Placement

assume a pub/sub system, such as MQTT (Message Queuing Telemetry Transport), due
to its communication scalability and minimum resource requirements [170].

Note that the tracking mechanism is essential for enabling data locality-awareness, while
the following control mechanism primarily ensures the self-adaptive and timely placement
of edge analytics based on data locality. The scalability of the tracking mechanism will
be investigated in future work.

5.2.5 SEA-LEAP Control Mechanism

The control mechanism is the cornerstone of SEA-LEAP architecture. The goal is to
enable self-adaptive placement of an analytics application α considering a dataset location
dloc, based on two actions, namely,

• GuideMe: static placement of an analytics application to the source node candidate
initially storing the requested input dataset. If the input dataset is simultaneously
present on multiple locations, the node ensuring the lowest estimated analytics
execution time is selected as the target one;

• FollowMe: dynamic placement of an analytics application to an alternative node
candidate that minimizes overall request execution time. In this case, an adaptive
dataset movement from the source to the alternative node is necessary, before the
analytics placement and execution.

These actions can offer a continuous adaptation of analytics placements in highly dis-
tributed and networked edge servers. Both actions rely on two important services of the
control mechanism, namely, the meta-scheduler and the placement optimizer, described
in the following sections.

Meta Scheduler

Accessing the dataset locations can be done by storing location details in the meta-dataset
(described in Section 5.2.4), while placement adaptations are managed on-the-fly within
the meta scheduler. We assume that the meta scheduler is accessible, and there can
be multiple instances serving. Algorithm 7 describes the meta scheduler life cycle in
detail. The scheduler continuously listens for new requests in lines 1-2. Once a user sends
an analytics request description, containing details for application execution, its format
is checked. If its format is valid (lines 3-5), the meta scheduler extracts information
such as the name of the required dataset id and analytics process α (line 6). Next, the
meta-dataset is checked and relevant information is retrieved (lines 7-8). If corresponding
information exists, the meta scheduler will send details to the placement optimizer (line
9). The output of the placement optimizer represents the node location that guarantees
the lowest total latency for the request and it is stored in the Lap (lines 10-11). In case
the usage of Lap requires adaptive data movement, the meta scheduler will follow the

77

5. Deployment of Edge Video Analytics Systems

procedure from Algorithm 6 (lines 12-14). Finally, the meta scheduler performs the
placement of α in the node Lap (line 15).

Algorithm 7 MetaScheduler

1: while TRUE do . loop serving one client’s requests
2: rcvf ← waitConnection() . waiting for incoming connections
3: if rcvf = fmt then . checking the format of analytics request
4: continue
5: end if
6: parse(rcvf) . extracting needed information (dname, α)
7: Create matrix Λ with location-related information about d
8: Λ← retrieve(dname) . retrieving details from metadb
9: if Λ 6= empty then

10: Lap ← PlacementOptimizer(Λ)
11: Adapt deployment templates with the Lap and other info
12: if Lap is not one of the initial location from Λ then
13: Replicate dataset d to Lap using Algorithm 6
14: end if
15: deploy(R,Lap) . placing analytics to node location Lap
16: end if
17: end while

Placement Optimizer

The goal of the placement optimizer is to find an edge location that minimizes the total
latency. It is designed to satisfy users’ latency requirements for timely decision-making
processes. Total latency is impacted by (i) analytics execution time that depends on node
and dataset characteristics, (ii) data transfer that is affected by network characteristics.

We consider analytics placement as a minimization problem with latency as an objective.
We assume that users can submit requests for executing data analytics applications
over different input datasets, whose location is unknown to the user. Computational
infrastructure is modeled as a graph I = (N , E) (as used in [171]), such that N is a set of
different nodes where applications and datasets can be placed, and E models the network
connections between nodes. For each (ni, nj) ∈ E , with ni, nj ∈ N , we define both latency
l(ni, nj) and bandwidth b(ni, nj) measurements of network connection (described later
in Section 6.3.3).

We also define a set D of different generated datasets, that can be initially stored in one or
multiple nodes n ∈ N over a geographical area. In the latter case, we assume that those
datasets are always synchronized. Further, each dataset d is defined by its size size(d)
and the set Λ(d) of nodes where d is stored. Users submit a request R = (α, dname) to I,
where α is an analytics application, and dname is the name of the input dataset for α.
For each R, SEA-LEAP goal is to identify location Lap for α and d that minimizes R

78

5.2. Data Locality-aware Edge Analytics Placement

total latency, i.e.,
Lap = arg min

L[i]
(L[i]t_latR), L(α) = L(d). (5.1)

L is a matrix that contains location candidates with calculated total latency, including a
potential data transfer and the analytics execution time on the specific node candidate:

TL = tmvd(ni,nj) + t(R,nj), (5.2)

where ni initially stores the dataset d (ni ∈ Λ(d)), and nj is an alternative node candidate
(nj ∈ L(d)). In case of ni as the initial candidate, i.e., ni = nj , then TL = t(R,ni).
Otherwise, we define tmvd(ni,nj) as the time required to send d from ni to nj , i.e.,

tmvd(ni,nj) = l(ni, nj) + hops(ni, nj) ·
size(d)
b(ni, nj)

, (5.3)

where hops(ni, nj) is the number of hops between ni and nj . Further, we define t(R,nj)
as the estimated time required to complete analytic request R(α, d) on node nj , i.e.,

t(R,nj) = inf_time(nj) · no_frames(d), (5.4)

where inf_time(nj) is an average inference time per frame, and no_frames(d) is the
corresponding number of frames in target dataset d (see Section 6.3.3).

Algorithm 8 describes the placement optimizer. First, two data structures are created
to store location candidates for analytics placement (lines 1-2): L, containing a total
estimated latency, and LKB, which stores potential candidates retrieved from KB if
they satisfy certain conditions, e.g., nodes with better inference time compared to the
source node(s) (line 3). Next, each node containing the requested dataset (line 4) will
initially become a candidate for placing the required analytics (lines 5-7). Then, even if
the required dataset is present on multiple nodes, the placement depends on the total
latency of each candidate (line 6). In lines 8-12, we calculate total latency for each new
candidate, since due to the heterogeneity of the infrastructure it is possible to achieve a
lower total latency on a node with more resources, despite the data transfer (line 10).
Consequently, the most appropriate node location Lap is the one offering the lowest total
latency (line 14), returned in line 15. We consider three scenarios: (i) the dataset is stored
on a single node with the lowest estimated analytics latency; (ii) the dataset is stored on
multiple and heterogeneous nodes, therefore the most powerful will run the analytics;
and (iii) edge node(s) storing the required dataset do not have resource capabilities to
meet latency requirements, thus, the dataset will be placed to a node which minimizes
overall request execution time.

Theorem 1. SEA-LEAP complexity is O(n ·m+ k).

Proof. SEA-LEAP complexity is determined mainly by two components, MetaScheduler
and PlacementOptimizer. MetaScheduler complexity (see Algorithm 7) depends

79

5. Deployment of Edge Video Analytics Systems

Algorithm 8 PlacementOptimizer

Input: Set of nodes storing req. dataset Λ
Output: The most appropriate location Lap
1: Create matrix L forming location candidates with est. total latency
2: Create matrix LKB for potential location candidates from KB
3: LKB ← KB(ntype > Λ(ntype)) . retrieving alternative candidates
4: for each ninit ∈ Λ do
5: Add node ninit to L
6: Calculate TL(ninit) for the initial node using (5.4)
7: L(ninit, TL)← TL(ninit)
8: for each nnew ∈ LKB do
9: Add node nnew to L

10: Calculate TL(nnew) for new nodes locations using (5.2), (5.3) and (5.4)
11: L(nnew, TL)← TL(nnew)
12: end for
13: end for
14: Lap ← Li with minimum total latency . compute Lap using (5.1)
15: Return Lap

on PlacementOptimizer (see Algorithm 8), since all other lines have complexity O(1).
The for loop (line 4) from Algorithm 8 iterates over the set of node locations Λ that
simultaneously store the requested dataset. Entering the inner for loop in line 8, it
iterates over each new node location candidate and calculates the estimated total latency
in line 10, resulting in complexity of O(n ·m), where n is the number of replicas, repre-
senting the initial node candidates, and m is the number of alternative node candidates.
Next, searching the candidate with the lowest total latency in line 14 has the complexity
of O(k), where k is the total number of node candidates. Other lines are O(1), resulting
in the overall complexity of O(n ·m+ k).

O(n ·m+ k) is acceptable in our context, since (i) n is expected to be either 1 due to
limited edge storage capacities [50] or small while still guaranteeing the resilience with
fewer replicas as showed in [155], and (ii) m is limited to both nodes whose types match
the types from KB benchmarks and that have lower inference time per frame than initial
nodes from the set Λ.

80

CHAPTER 6
Evaluation

This chapter shows the experimental evaluation of the proposed approaches in the previous
chapters. We first evaluate the proposed edge data management framework in Section 6.1
featuring three mechanisms, namely, adaptive data recovery (Section 6.1.2), edge storage
management mechanism (Section 6.1.3), and projection recovery maps for supporting
an automatic data recovery (Section 6.1.4). In Section 6.2, we evaluate the technology
and system components for increasing traffic safety with real-time edge analytics and
5G, including details about design choices of the real-world prototype deployment. In
Section 6.3, we show the experimental evaluation of self-adaptive and locality-aware edge
analytics placement, including details about testbed configuration, input datasets and
target application.

6.1 Edge Data Management Services Evaluation

In Chapter 3, we described a complete edge data management framework (EDMFrame),
featuring different edge data services. We evaluate EDMFrame experimentally using six
sensor-based time series datasets from smart buildings and homes. Results show that
EDMFrame: (i) can automatically recover gaps of various lengths with single-technique
recovery and achieving less error employing PRM-based multi-technique recovery (as
shown later in Section 6.1.4; and (ii) reduce the amount of data stored adaptive cycles,
while keeping high prediction accuracy, therefore storing only data relevant for predictive
analytics at the network edge.

The proposed EDMFrame is implemented and simulated using R language on a 64-bit
Windows 10 PC, configured with a 2.70-2.90 GHz Intel i7-7500U CPU and 16 GB RAM.

81

6. Evaluation

6.1.1 Data and Measures

We evaluate our approach on sensor-based time series data, typical in IoT applications
like smart buildings and homes [2]. The main characteristics of selected time series
datasets are presented in Table 6.1.

• Datasets h_1-3 contain traces from the Smart* project [172] for optimization of
energy consumption in smart homes, obtained by UMass Trace Repository [173].
They represent various environmental and electrical data, such as temperature,
relative humidity, wind information, and heat index.

• Datasets b_1-3 come from the monitoring system of Austria’s largest Plus-Energy
Office High-Rise Building [174]. These datasets contain various measurements used
for automatic HVAC systems (Heating, Ventilation, and Air Conditioning), cooling,
energy management (e.g., temperature, indoor air quality, electricity production
and consumption).

These traces represent real-world data, whose near real-time analysis can bring valuable
hints for IoT actuators, making these datasets appropriate samples for our experiments.
We have selected six datasets targeting different characteristics and behavior, to show
the applicability of our algorithms.

Further, we use Mean Absolute Percentage Error (MAPE) [175] for forecast accuracy
evaluation among different datasets, due to its scale independence. Based on MAPE, we
also define Mean Absolute Percentage Accuracy (MAPA) as in Equation 6.1:

MAPA(Y, Ŷ) = 100− MAPE(Y, Ŷ) (6.1)

where MAPE(Y, Ŷ) is equal to 100
n

∑n
i=1 |

(yi−ŷi)
yi
|, Y and Ŷ are respectively the sets of

actual values and their forecasts, n is the number of data points, yi − ŷi is the forecast
error, yi and ŷi are respectively the i-th value of y and its forecast.

Table 6.1: Main characteristics of datasets for the EDMFrame experimental evaluation.

Source Dataset Sensor type Range of values Volatility [SD]

1
h_1 heat index [F] 52.11-88.79 8.74
h_2 room temp. [F] 68.90-79.70 2.51
h_3 RH [%] 30.2-92.7 18.52

2
b_1 el. meter [kWh] 19.86-19.97 0.04
b_2 flow temp. [C] 41.3-48.1 1.32
b_3 IAQ [ppm] 458.11-707.88 62.53

82

6.1. Edge Data Management Services Evaluation

6.1.2 Adaptive Data Recovery Evaluation

Recovery of multiple gaps simulation 1

We first evaluate the applicability of the proposed approach (see Section 3.2) by recovering
multiple gaps in different datasets, utilizing the forecast package [176] in R. We see an
example in Figure 6.1. The upper graph shows an incomplete subset of the dataset h_1
before the recovery, while the lower graph shows a complete dataset after recovery. Gray
shaded areas indicate four gaps. In all datasets by source 2, we observe several real gaps
in collecting data that can affect the accuracy of data analytics. Therefore, we identify
these gaps and artificially make gaps with same sizes in the dataset h_1 (precisely, gaps
with 1 (G1

1), 2 (G2
2), 17 (G17

3) and 30 (G30
4) consecutive missing/invalid data values).

Then, these gaps are recovered using the proposed mechanism, and forecast accuracy
is evaluated using MAPE measure. The black solid line represents the actual behavior
of a dataset using data points connected by trend lines. The black dashed line shows
actual data for corresponding gaps, while the red solid line represents predicted values of
missing/invalid data, calculated using forecasting techniques.

In this example, multiple gaps are automatically recovered using ARIMA, representing the

Dataset with missing values

Va
lu

es

150

Data indexes

200

65
75

85 actual

Recovered dataset without missing values

Va
lu

es

0

Data indexes

65

actual

forecasts
actual for gap

100500 250

75
85

25020015010050

Figure 6.1: Adaptive data recovery of multiple gaps (G1
1, G2

2, G17
3 and G30

4) on dataset
h_1, employing ARIMA, as STR approach.

83

6. Evaluation

STR (single-technique recovery) scenario. Sensor-based time series, as shown in the first
sub-figure, can contain different behaviors from stationary to trend and volatile patterns.
For this reason, the MAPE of reconstructed gaps G1

1, G2
2 and G17

3 are significantly low,
0.1843%, 0.1317% and 0.3366% respectively, while the MAPE for the G30

4 is 2.6797%.
We also notice a direct relationship between gap length and forecasting error. Results
show that our mechanism is able to recover all gaps with a running time of 0.68s.
Moreover, based on the proposed mechanism, multiple techniques can be involved in the
recovery process of each gap separately. MTR is employed by the mediator component
in Section 6.1.4.

Recovery of multiple gaps simulation 2

Further, we extend the evaluation using larger subsets of the complete datasets (Table 6.1)
from each source, targeting characteristics such as sensor type and a wider range of values,
as it is shown in Table 6.2. This time, each dataset contains around 14600 data points
for the second part of the experiments. To evaluate the proposed approach of adaptive
and automatic near real-time data recovery, after the analysis of datasets we identify
larger gaps and artificially made those gaps with approximately same sizes, precisely,
gaps with 238 (G238

1), 3 (G3
2) and 5016 (G5016

3) consecutive missing/invalid data values.
Then, these gaps are recovered using the proposed mechanism, and forecast accuracy is
evaluated by comparing predicted data with actual data from each gap. This choice has
been made to ensure a fair comparison between all techniques, comparing them according
to the forecast error they achieve on the same gap sizes and the same data.

We apply the proposed mechanism and show two representative examples among used
datasets from each of data sources as it is illustrated in Figure 6.2. Each example is
represented in a separated sub-figure. Each sub-figure consists of two graphs: the upper
graph indicates incomplete dataset before recovering process, while the lower graph
indicates complete dataset after applying recovering procedures. Gray shaded areas
indicate three gaps, precisely, 238, 3 and 5016 missing values in a sequence. The black
solid line represents existing values, that is, the actual state of a collected dataset on
the edge. The black dashed line shows actual data for corresponding gaps, while the
red solid line represents predicted values of missing data points as an output of applied

Table 6.2: Adaptive recovery dataset information.

Source Dataset Sensor type Range of values

1
bsmart1 el. meter [kWh] 21.71-23.37

bsmart2 room temp. [C] 21.06-23.78

2
hsmart1 room temp. [F] 65.89-83.30

hsmart2 heat index [F] 27.86-107.64

84

6.1. Edge Data Management Services Evaluation

Dataset with missing values

Data indexes

V
al

ue
s

0 5000 10000 15000

22
.0

23
.0

actual

Recovered dataset without missing values

Data indexes

V
al

ue
s

22
.0

23
.0

actual
actual for gap
forecasts

0 5000 10000 15000

(a)

Dataset with missing values

Data indexes

V
al

ue
s

0 5000 10000 15000

21
23

25
27 actual

Recovered dataset without missing values

 Data indexes

V
al

ue
s

0 5000 10000 15000
21

23
25

27

forecasts
actual for gap
actual

(b)

Figure 6.2: Results of semi-automatic recovery of multiple gaps. Sub-figures (a) and
(b) are representative examples of recovered gaps for datasets bsmart1 and bsmart2,
respectively. It shows results of STR.

forecasting techniques. All gaps are again recovered using ARIMA technique from R
forecast package, representing STR scenario, instead of selecting the most appropriate
recovery method for each of three gaps, as in condition-based recovery of MTR. It can be
seen that time series in the first sub-figure contains deterministic linear trend pattern
that makes ARIMA forecasting appropriate and more accurate in comparison to the
behavior of time series shown in the second sub-figure (i.e., flat forecasts for the third gap
of Figure 6.2b). This dataset shows an irregular pattern making forecasting process more
difficult. For this type of time series, where no trend or seasonality can be captured, the
algorithm calculates best suitable straightforward prediction line with 95% confidence
interval, i.e., the same possible mean value for missing data. For this reason, the MAPE
of reconstructed gap G5016

3 by bsmart2 is around 1.68315%, while the MAPE for the
same gap by bsmart1 is around 0.11999%. It can be also seen that, as the gap increases,
the forecasting error increases too.

Finally, the graph confirms that the proposed automatic data recovery mechanism is
able to efficiently cope with multiple gaps by forecasting all gaps with running time of
2.27s and 4.18s (see Figure 6.3), for bsmart1 and bsmart2, respectively. These scenarios
simulate users that specify a particular forecasting technique for the whole recovering
process of incomplete dataset (see Subsection 3.2.2). On the other hand, based on the
proposed mechanism, it is possible to specify different forecasting techniques involved
in recovering process of each gap separately, i.e., MTR scenario, that is shown in the
following section.

85

6. Evaluation

bsmart1 bsmart2 hsmart1 hsmart2
ARIMA 37.7115.144.182.27

ETS 9.433.57 2.67 14.18
AdaptOpt

0

20

40

60

80

100

120

37.8735.452.171.7

Dataset

S
e

co
n

d
s

e
la

p
se

d

Figure 6.3: Running time of recovering all gaps.

Discussion on adaptive recovery of multiple gaps

We further evaluate the applicability of the proposed mechanism by recovering multiple
gaps in different datasets and measuring accuracy and runtime for three cases: (1)
ARIMA, (2) ETS, and (3) AdaptOpt (Adaptive Option), respectively. In the first two
cases, the same technique is used for all gaps, that is, single-technique recovery (STR),
while in the last case, condition-based MTR (multi-technique recovery), based on the
combination of different forecasting techniques on different gaps, is employed.

We compare forecast accuracy measures (see Figure 6.4) and perform code running time
analysis (see Figure 6.3), showing the efficiency of the proposed mechanism with the
selection of different forecasting techniques from the repository. Besides the possibility
of using different techniques for each time series, it is also possible to select different
techniques for each gap. This allows to avoid computation expensive techniques for small
gaps or individual missing values and thus improving performance.

Figure 6.4 depicts the proposed mechanism applied on each of four different datasets
containing the same sizes of multiple gaps. Each of the four sub-graphs represents one
dataset. The recovering process is tested by utilizing different forecasting techniques
in three cases shown on the horizontal axis, (1) ARIMA, (2) ETS and (3) AdaptOpt,
respectively. In the first two cases, the same technique is used for recovering all gaps,
among which some graphs have been shown previously. The latter (Adaptive Option)
depicts the second scenario, where we utilize a combination of different forecasting
techniques, showing the benefits of the recovering procedure. The vertical axis shows
MAPE for corresponding gaps. Comparing the MAPE between same gaps within one
particular dataset, the error increases as size of gap increases in bsmart1 and bsmart2,
while for hsmart1 and hsmart2 is the opposite. The reason lies in a wider range of values
and more volatile behavior for data from source 2, where, e.g., for bsmart2, the error
increases by 107.02% on average, while for hsmart2 it decreases by 46.47% on average,

86

6.1. Edge Data Management Services Evaluation

0.7

Gap 3

Gap 2

Gap 1
0

0.1
0.2
0.3
0.4
0.5
0.6

1Gap 0.05433 0.07509 0.05433
2Gap 0.02287 0.02255 0.02320
3Gap 0.11999 0.69268 0.11999

M

A
P

E
 [%

]

Case

ARIMA ETS AdaptOpt

(a) Data recovery in dataset bsmart1.

1.8

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6

Gap 3

Gap 2

Gap 1

1Gap 0.81496 0.81629 0.81496
2Gap 0.00296 0.00226 0
3Gap 1.68315 1.69794 1.68315

M

A
P

E
 [%

]

Case

ARIMA ETS AdaptOpt

(b) Data recovery in dataset bsmart2.

4

0
0.5

1
1.5

2
2.5

3
3.5

Gap 3

Gap 2

Gap 1

Gap 1 3.63675 3.65053 2.39215
Gap 2 0.12265 0.11558 0.27005
Gap 3 2.70664 2.70109 2.70323

M
A

P
E

 [%
]

Case

ARIMA ETS AdaptOpt

(c) Data recovery in dataset hsmart1.

35

0
5

10
15
20
25
30

Gap 3

Gap 2

Gap 1

Gap 1 31.14066 31.05395 18.31174
Gap 2 2.44096 2.47718 0.62036
Gap 3 13.88188 13.69471 13.16730

M
A

P
E

 [%
]

Case

ARIMA ETS AdaptOpt

(d) Data recovery in dataset hsmart2.

Figure 6.4: MAPE accuracy measure for three recovered gaps of missing values among
4 datasets. All three gaps (that is, G238

1 , G3
2 and G5016

3 , respectively), are recovered by
utilizing different forecasting models in three cases: ARIMA, ETS and AdaptOpt.

between gaps G238
1 and G5016

3 .

For the case 3, in each dataset, three gaps are recovered, respectively, by applying
techniques ARIMA, ETS, ARIMA for bsmart1, ARIMA, n-point average, ARIMA, for
bsmart2, TBATS, n-point average, ETS, for both, hsmart1 and hsmart2. With this setup,
we are able to reduce overall running time by 25.11% and 52.38% for bsmart1 comparing
case 3 to cases 1 and 2, respectively, and at the same time having 82.68% less forecasting
error for gap G5016

3 comparing with case 2. For bsmart2, we have a slightly better forecast
accuracy, but reduced overall running time by up to 48.09% in comparison to cases 1 and
2. Additionally, by performing n-point average for gap G3

2, we were able to completely
recover that gap, having 0 for the MAPE value, because of the presence of redundant
predecessor values. Although the running time for the case 3 is not the lowest for hsmart1
and hsmart2, the error decreases up to 41.2% for the first gap of dataset hsmart2. By
performing the proposed AdaptOpt in case 3, depending on the type of datasets, we are
able to reduce either only forecast error or both, the error and the running time.

Figure 6.5 shows absolute percentage error behavior for two datasets (bsmart1 and
hsmart2) along two bigger gaps (gaps G238

1 and G5016
3) of the incomplete data. It

87

6. Evaluation

-0.01

0.24

22
5

20
9

19
3

17
7

16
1

14
5

12
9

11
3

9781654933171

-0.06

0.04

0.09

0.14

0.19

A
b

so
lu

te
 P

e
rc

e
n

ta
g

e
 E

rr
o

r
[%

]

Data indexes

Percentage error (238 values)

0

1.4

46
91

43
56

40
21

36
86

33
51

30
16

26
81

23
46

20
11

16
76

13
41

10
06

67
1

33
61

0

0.2

0.4

0.6

.8

1

1.2

A
b

so
lu

te
 P

e
rc

e
n

ta
g

e
 E

rr
o

r
[%

]

 Data indexes

Percentage error (5016 values)

 case 2

trendline

case 3

trendline

 case 2

trendline

case 3

trendline

(a) Recovered gaps from bsmart1.

50

46
91

43
56

40
21

36
86

33
51

30
16

26
81

23
46

20
11

16
76

13
41

10
06

67
1

33
61

0
5

10
15
20
25
30
35
40
45

A
b

so
lu

te
 p

e
rc

e
n

ta
g

e
 e

rr
o

r
[%

]

Data indexes

Percentage error (5016 values)

60

22
5

20
9

19
3

17
7

16
1

14
5

12
9

11
3

9781654933171

0

10

20

30

40

50

A
b

so
lu

te
 p

e
rc

e
n

ta
g

e
 e

rr
o

r
[%

]

Data indexes

Percentage error (238 values)

 case 1

trendline

 case 1

trendline

case 3

trendline

 case 3

trendline

(b) Recovered gaps from hsmart2.

Figure 6.5: Absolute percentage error behavior along recovered gaps comparing with
proposed AdaptOpt (case 3).

illustrates that application of the proposed AdaptOpt approach, overall, results in a
smaller error which is shown also by calculated trendlines. Although the gap to recover
can be significantly bigger (5016 values), we see that the MAPE increases only by up to
0.31% for bsmart1 and to the peak value of 46.57% for hsmart2. Because of the volatile
behavior of data from hsmart2, the error can come to the higher peak values. However,
with the appropriate methods, it can be greatly improved, e.g., using ARIMA instead of
ETS and TBATS instead of ARIMA for bsmart1 and hsmart2, respectively. Considering
unlikely cases with big gaps at the edge, the experimental results confirm the benefits
of our approach, and especially of the selection of different techniques for recovering
different gaps within the same incomplete dataset.

88

6.1. Edge Data Management Services Evaluation

6.1.3 Edge Storage Management Evaluation

Based on the proposed edge storage management mechanism and principles in Section
3.3, we evaluate the accuracy of the forecasts in predictive analytics for decision-making
processes and the amount of data that have to be stored on the edge node. First, we
show an example and application of the proposed algorithm, focusing on the recognition
and selection of clusters with stable forecast accuracy. Then we perform an experimental
evaluation of the edge storage mechanism, showing the benefits of implementing our
algorithm in edge-limited storage.

Example of stable forecast accuracy cluster detection

To explore the full potential of the proposed adaptive algorithm (described in Section
3.3.2), we show a simple dataset with a seasonality pattern that has more than one cluster
with stable forecast accuracy. We provide a step-by-step evaluation of the algorithm. For
the experiments, we manually defined rules to simulate the specification list. The forecast
period is set to 24, the same as the periodicity of the dataset. The forecast period stays
fixed in a current cycle, while a client can change the desired forecast period in the
specification list anytime. Then, we consider a high threshold for the forecast accuracy of
90%, since we expect high forecast accuracy results due to the small forecasting period
in comparison with the available dataset size.

In Figure 6.6, the upper graph represents the original dataset, while the lower graph
represents the result after applying ETS forecast method validating the principle for
multiple forecast iterations on the available dataset. The original dataset is composed
of 336 data points. As we already defined the forecast period, the last 24 data points
become test data, while the others will be used in different ranges to predict the same
forecast period.

Blue bold points in the lower graph indicate forecast accuracies for the corresponding
number of used data, i.e., the number of data that is artificially decreased in each iteration
to capture different forecast values estimating the same forecast period. For example,
the first blue point shows us that in the forecasting process 312 data points are used and
the forecast accuracy is slightly below 93%. In the lower graph of Figure 6.6, some stable
behaviors of forecast accuracies are visible, and their automatic recognition is performed
by Algorithm 3. Two stable clusters are selected and shown in Table 6.3. The resulting
table provides mean values of accuracies in each cluster and corresponding indexes of
data points from the storage for each cluster. Additionally, an interval of available data
points shows how many data points remain between the start/end index of the cluster.
The sum of the corresponding cells gives the total number of test data.

The selection of the appropriate cluster is done according to Algorithm 4. The forecast
accuracy threshold for the current observations is compared with the mean value of each
cluster. Therefore, the first cluster is selected at first as an appropriate cluster. Further,
checking the conditions for a better accuracy value with a smaller dataset, the second
cluster replaces the old one and becomes a new selected cluster.

89

6. Evaluation

10
15
20
25
30
35

1 13 25 37 49 61 73 85 97 10
9

12
1

13
3

14
5

15
7

16
9

18
1

19
3

20
5

21
7

22
9

24
1

25
3

26
5

27
7

28
9

30
1

31
3

32
5

V
A

LU
E

S

DATA INDEXES

91

91.5

92

92.5

93

93.5

94

94.5

3
1

2

3
0

0

2
8

8

2
7

6

2
6

4

2
5

2

2
4

0

2
2

8

2
1

6

2
0

4

1
9

2

1
8

0

1
6

8

1
5

6

1
4

4

1
3

2

1
2

0

1
0

8

9
6

8
4

7
2

6
0

F
O

R
E

C
A

S
T

 A
C

C
U

R
A

C
Y

 (
%

)

NUMBER OF AVAILABLE DATA POINTS

1
2

Figure 6.6: Observed dataset and forecast accuracy observation with stable accuracy
clusters detection.

Table 6.3: Stable clusters of forecast accuracy.

Mean value
Range of cluster

indexes Interval of available
data pointsStart End

1 92.44903 12 48 300 264
2 94.13858 132 192 180 120

Finally, at the end of each cycle, a data management action will release data points
starting from the oldest data point, i.e., with index 1, until the middle of an appropriate
cluster, i.e., by index 162, thus keeping 174 available data points in the storage. In this
demonstrating example, based on our proposed approach, it is possible to reduce the
amount of stored data by 48% in one cycle, while keeping the accuracy of our predictions
above a specified threshold.

Edge storage management simulation

We simulate edge storage management with a fixed amount of data. We use Algorithm 4
for appropriate cluster selection. Subsets of a dataset h_1 is shown in Figure 6.7 and

90

6.1. Edge Data Management Services Evaluation

90
15 29 43 57 71 85 99 11

3
12

7
14

1
15

5
16

9
18

3
19

7
21

1
22

5
23

9
25

3
26

7
28

1

H
ea

t i
nd

ex
 [F

]

Data indexes

60
65
70
75
80
85

1

100

27
6

26
0

24
4

22
8

21
2

19
6

18
0

16
4

14
8

13
2

11
6

10
0 84 68 52 36

M
AP

A
[%

]

OF TRAINING DATA POINTS

93
94
95
96
97
98
99

release <= => keep

(a) Cycle 1

release <= => keep

60
65
70
75
80
85
90

1 13 25 37 49 61 73 85 97 10
9

12
1

13
3

14
5

15
7

16
9

18
1

19
3

20
5

21
7

22
9

24
1

H
ea

t i
nd

ex
 [%

]

Data indexes

97
97.5

98
98.5

99
99.5
100

23
2

22
0

20
8

19
6

18
4

17
2

16
0

14
8

13
6

12
4

11
2

10
0 88 76 64 52 40 28

M
AP

A
[%

]

OF TRAINING DATA POINTS

release <= => keep

(b) Cycle 2

60
65
70
75
80
85
90

1 13 25 37 49 61 73 85 97 10
9

12
1

13
3

14
5

15
7

16
9

18
1

19
3

20
5

21
7

22
9

24
1

H
ea

t i
nd

ex
 [%

]

Data indexes

95

96

97

98

99

100

23
5

22
3

21
1

19
9

18
7

17
5

16
3

15
1

13
9

12
7

11
5

10
3 91 79 67 55 43 31

M
AP

A
[%

]

OF TRAINING DATA POINTS

release <= => keep

(c) Cycle 3

Figure 6.7: Evaluation of edge storage management on h_1 dataset - cycles 1-3 showing
available dataset (upper graphs) and stable clusters of forecast accuracies (lower graphs).
Vertical blue dotted line represents retained data points.

represents 3 cycles of edge storage management. In the first cycle, the same data from
the data recovery process are used. Further, in the second and third cycles, we set, in

91

6. Evaluation

addition to data coming from the previous cycle, the upcoming amount of data on 144
(5min interval for 12h) data points per turn. Also, we define certain rules to simulate
the specification list. Forecast horizon fh is set to 12 data points, representing one hour
(12 · 5min) for which forecasts are calculated. Forecast horizon fh is fixed in the current
cycle, while the user can change the desired fh in the specification list. Then, we consider
the threshold CLth for identifying stable accuracy clusters of 90%, since the proposed
framework targets near real-time decision-making in IoT applications and we expect
accurate MAPA measures due to the short fh comparing to the available dataset size.

Regarding Figure 6.7, the upper graph represents the original dataset. The vertical
blue dotted line represents the data management decision after the procedures from
lower graphs. The lower graphs represent the result after applying the forecast method
and validating the principle for multiple forecast iterations on the available dataset. In
MAPA measurements, orange areas are stable clusters, while green areas are selected
appropriate clusters. The last 12 data points are test data, while the rest is used in
different variations to predict fh. In the first cycle, the algorithm finds an appropriate
cluster in a range between 68 and 108 available data points, corresponding to the cluster
between data indexes 168 and 208 in our original dataset (upper graph). The central
index of that cluster indicates that data management will release data points in range
1-188, respectively, indexes in range 189-288 will retain in the edge storage. The process
repeats for each next cycle. Figure 6.8 summarizes all 5 cycles.

Figure 6.8a shows both, released and retained data per each cycle, while Figure 6.8b
shows the accuracy of the selected appropriate cluster CLap and the percentage of
clustered MAPA values (lower graphs in Figure 6.7) per cycle. In Table 6.4, all 5 cycles
are averaged and compared among datasets in Table 6.1. The results show that on
average 39.9% of data points can be retained, while keeping the appropriate cluster
CLap accuracy, depending on algorithms’ parameters. Generally, we can find appropriate
clusters with accuracy around 98.83% and clustered MAPA measurements above 50%,
based on approximately 34 multiple forecast iterations. Results show that our mechanism
can achieve user-defined high accuracy using less data.

188 141 195 148 125

100
103 52

48 67

1 2 4 5
CYCLESAM

O
U
N
T
O
F
DA

TA

Released data Retained data

3

(a) Data management

0

50

100

97
98
99

100

1 2 3 4 5

C
lu

st
er

ed
 a

cc
. [

%
]

M
A

PA
 [%

]

CYCLES

Clustered forecast accuracies
CLap accuracy

(b) Output details

Figure 6.8: Released/retained data, appropriate cluster accuracy and clustered forecast
accuracies percentage of Algorithm 5 after 5 cycles.

92

6.1. Edge Data Management Services Evaluation

Ta
bl
e
6.
4:

M
ea
n
re
su
lts

of
5
st
or
ag

e
m
an

ag
em

en
t
cy
cl
es

pe
r
da

ta
se
t.

D
at
as
et

R
et
ai
n.

R
et
ai
n.

[%
]

C
lu
st
er
s

C
lu
st
.
[%

]
It
er
at
io
ns

C
L
a
p

T
im

e
h_

1
74

31
.4

3.
2

72
.7
3

33
99

.0
4

2.
48

h_
2

63
.4

33
.4

3.
8

65
.0
6

33
.8

99
.7
7

2.
53

h_
3

94
.6

42
.8

4
59

.8
9

34
.6

96
.9
0

3.
09

b_
1

69
.8

35
.2

3.
2

73
.8
8

33
.8

99
.9
9

2.
26

b_
2

97
.2

44
.6

3.
6

81
.2
4

34
.4

99
.2
0

3.
10

b_
3

13
7.
2

52
3.
4

61
.4
3

33
.6

98
.0
5

2.
62

Ta
bl
e
6.
5:

C
om

pa
ris

on
of

PR
M
-b
as
ed

M
ul
tip

le
Te

ch
ni
qu

e
R
ec
ov
er
y
(M

T
R
)
vs

Si
ng

le
Te

ch
ni
qu

e
R
ec
ov
er
y
(S
T
R
)
fo
r
fo
ur

ga
ps

on
six

da
ta
se
ts
.

D
at
as
et
s

h_
1

ST
R

h_
1

PR
M

h_
2

ST
R

h_
2

PR
M

h_
3

ST
R

h_
3

PR
M

b_
1

ST
R

b_
1

PR
M

b_
2

ST
R

b_
2

PR
M

b_
3

ST
R

b_
3

PR
M

R
un

ti
m
e
[s
]

0.
68

2.
47

0.
98

0.
83

0.
97

1.
62

0.
89

0.
75

1.
2

1.
1

1.
08

0.
92

M
A
P
E

0.
83

31
0.
80

61
0.
49

19
0.
34

76
13

.3
22

9
11

.7
89

0.
00

84
0.
00

29
0.
93

77
0.
93

21
0.
76

7
0.
78

36

93

6. Evaluation

6.1.4 Projection Recovery Maps Evaluation

In Section 3.3.2, we defined two methods for data recovery, namely, STR and MTR.
Section 6.1.2 first describes two examples of the STR scenario, where each gap is recovered
with a single technique, that uses data points preceding each gap as input. We also
demonstrated the benefits of the MTR method in which applying different techniques for
various gaps within the incomplete dataset can reduce either only the forecast error or
both the error and computation time. To make the second method MTR self-adaptive
and automatic, we employ PRMs (Projection Recovery Maps), used by the adaptive
recovery mechanism to select both the recommended range of required data points and
recommended recovery method.

In Figure 6.9, for each number of missing values from indexes 1 to 144, the algorithm
finds recommended range of required data points by finding stable clusters (described in
Algorithm 3) and calculating the most accurate cluster. The original algorithm is modified
by considering stable clusters with the highest forecast accuracy (see Definition 3.6).
The blue line shows the upper border of the cluster, while the green line shows its lower
border. We apply ETS and ARIMA forecast methods, and the method with the highest
accuracy is selected. Figure 6.9(a-f) shows PRMs for all datasets. ETS results are in
yellow, while ARIMA is in grey. For each selected range of required data points, we show
the MAPA value in orange.

The mediator component can store the completed PRMs, and once the monitoring
component detects a gap, the mediator recommends a range of required data points
and a forecasting method for recovery. In case there is not enough data in edge storage,
the mediator component retrieves data from the cloud, storing them for the time of
data recovery. We test data recovery with 4 defined gaps (see Section 6.1.2) using STR
as a baseline. In Table 6.5, we compare running time and MAPE between STR and
PRM-based MTR. STR achieves a running time of 0.97s on average, while PRM-based
recovery can achieve up to 65.48% less error (e.g., dataset b_1) and only 31.96% more
time on average compared to STR. Using PRMs, we can improve at least one objective
or both in some cases.

6.2 System Deployment and a Performance Evaluation of
Traffic Safety with Edge and 5G

Based on the architecture design discussed in Section 5.1, we implemented and deployed
a prototype on a critical intersection in the city of Vienna. We evaluate the system
performance showing its capability to detect critical situations and deliver time-critical
warnings, e.g., timely sending notifications to drivers. We first provide technology
evaluation of both computation (including hardware and software) and communication
(including network protocol, quality of service and protocol setup) components.

94

6.2. System Deployment and a Performance Evaluation of Traffic Safety with Edge and 5G

50

55

60

65

70

75

80

85

90

95

100

0

50

100

150

200

250

300

350

400
1 9 17 25 33 41 49 57 65 73 81 89 97 10
5

11
3

12
1

12
9

13
7

M
A

PA
 [%

]

R
A

N
G

E
O

F
R

EQ
U

IR
ED

 D
AT

A
PO

IN
TS

OF MISSING VALUES

ETS
ARIMA
Upper_bound
Lower_bound
MAPA

(a) h_1

90

91

92

93

94

95

96

97

98

99

100

0

50

100

150

200

250

300

350

400

1 9 17 25 33 41 49 57 65 73 81 89 97 10
5

11
3

12
1

12
9

13
7

M
A

PA
 [%

]

R
A

N
G

E
O

F
R

EQ
U

IR
ED

 D
AT

A
PO

IN
TS

OF MISSING VALUES

ETS
ARIMA
Upper_bound
Lower_bound
MAPA

(b) h_2

0

10

20

30

40

50

60

70

80

90

100

0

50

100

150

200

250

300

350

400

1 9 17 25 33 41 49 57 65 73 81 89 97 10
5

11
3

12
1

12
9

13
7

M
A

PA
 [%

]

R
A

N
G

E
O

F
R

EQ
U

IR
ED

 D
AT

A
PO

IN
TS

OF MISSING VALUES

ETS
ARIMA
Upper_bound
Lower_bound
MAPA

(c) h_3

99.9

99.91

99.92

99.93

99.94

99.95

99.96

99.97

99.98

99.99

100

0

50

100

150

200

250

300

350

400

450

1 9 17 25 33 41 49 57 65 73 81 89 97 10
5

11
3

12
1

12
9

13
7

M
A

PA
 [%

]

R
A

N
G

E
O

F
R

EQ
U

IR
ED

 D
AT

A
PO

IN
TS

OF MISSING VALUES

ETS
ARIMA
Upper_bound
Lower_bound
MAPA

(d) b_1

90

91

92

93

94

95

96

97

98

99

100

0

50

100

150

200

250

300

350

400

1 9 17 25 33 41 49 57 65 73 81 89 97 10
5

11
3

12
1

12
9

13
7

M
A

PA
 [%

]

R
A

N
G

E
O

F
R

EQ
U

IR
ED

 D
AT

A
PO

IN
TS

OF MISSING VALUES

ETS
ARIMA
Upper_bound
Lower_bound
MAPA

(e) b_2

90

91

92

93

94

95

96

97

98

99

100

0

50

100

150

200

250

300

350

400

1 9 17 25 33 41 49 57 65 73 81 89 97 10
5

11
3

12
1

12
9

13
7

M
A

PA
 [%

]

R
A

N
G

E
O

F
R

EQ
U

IR
ED

 D
AT

A
PO

IN
TS

OF MISSING VALUES

ETS
ARIMA
Upper_bound
Lower_bound
MAPA

(f) b_3

Figure 6.9: Projection recovery maps for six evaluated time series datasets.

95

6. Evaluation

6.2.1 Technology Evaluation

Computation component

Hardware. Object detection performance depends on selected hardware. Due to physical
space limitations of the traffic light chamber, we employ single-board Raspberry Pi (RPi)
edge devices, to which we attach co-processors to improve the performance of neural
network inference. As co-processors, we evaluate Google’s Coral Edge TPU accelerator,
and Intel’s Neural Compute Stick 2 (NCS2) since both can be plugged via USB and
used for vision-based ML applications. We select Coral Edge TPU, since it supports
TensorFlow Lite models (lightweight solution to run ML TensorFlow models on edge
devices). Considering space and low-latency requirements, we evaluate different RPi
models with/without Coral’s Edge TPU. Table 6.6 shows technical details. To capture
video frames from the target intersection, we use RPi 8MP Camera Module V2.

Software. The software module is developed using TensorFlow Lite, a version of the pop-
ular TensorFlow framework optimized for limited IoT devices, including RPi (Raspberry
Pi). To select the best-performing edge configuration, we first collected video frames from
the chosen intersection, on which the prototype should be deployed. Then, we evaluated
the performance of both quantized MobileNet SSD v1 [84] and v2 [85], lightweight and
pre-trained convolutional neural network (CNN) based object detection models, trained
using the standard COCO [82] dataset, on our collected dataset.

Figure 6.10 shows the average inference time per single frame on different edge node
configurations. The results are averaged over 100 frames for statistical significance, since
by adding more frames the difference in the standard deviation of inference times is below
39 µs on average. We observe in Table 6.6 that RPi 4 with Edge TPU has overall the
lowest inference time for both models.

Furthermore, we check confidence scores of the model, calculated using Tensorflow
confidence function1, for both models in Figure 6.11. We consider quantized model
versions, to further improve latency with limited effect on inference score. Here, the
object detection module is set to only detect a class "person" from a collected dataset
with a confidence threshold of 0.5 (i.e., a cut-off threshold for accepting detection results).
Although MobileNet SSD v1 has a slightly lower inference time by 2.46ms (or 13.84%) on

1https://www.tensorflow.org/lite/models/object_detection/overview

Table 6.6: Edge node configurations.

Node
type CPU RAM

[GB]
Edge
TPU

RPi 3 B+ Quad-core Cortex-A53 (ARMv7) at 1.4GHz 1 no
RPi 3 B+ Quad-core Cortex-A53 (ARMv7) at 1.4GHz 1 yes
RPi 4 Quad-core Cortex-A72 (ARMv7) at 1.5GHz 4 no
RPi 4 Quad-core Cortex-A72 (ARMv7) at 1.5GHz 4 yes

96

https://www.tensorflow.org/lite/models/object_detection/overview

6.2. System Deployment and a Performance Evaluation of Traffic Safety with Edge and 5G

Figure 6.10: Inference time observation for different edge node configurations and two
object detection models.

Figure 6.11: Confidence score observation for two object detection models on RPi 4 with
Edge TPU (threshold set to 0.5).

average, MobileNet SSD v2 shows a better inference score of 16.12% on average. Thus,
we select as the best option MobileNet SSD v2 running on RPi 4 with Edge TPU.

97

6. Evaluation

Communication component

InTraSafEd 5G is designed to work in the mobile context, thus we consider 3G, 4G and
5G physical and transport layers. We describe now all design choices related to the
communication component.

Network Protocol. Since the main goal of InTraSafEd 5G is to provide notifications of
critical situations within specific time frames, the selected communication protocol should
(i) have a minimal message overhead to keep the transfer time and latency low, (ii) offer
guaranteed delivery of messages to users, and (iii) avoid unnecessary network flooding.
Traditional client-server communication (e.g., HTTP in cloud-based web applications), is
not suited for this scenario, due to high message overhead and the necessity of polling
to be notified about new events (e.g., a pedestrian detected in a blind spot). We focus
then on publish/subscribe (Pub/Sub) protocols, which allow event-based notification and
dynamical targeting of drivers close to a particular crossroad.

We select the following protocols for evaluation, used in different contexts requiring near
real-time latency: CoAP, DDS, AMQP, MQTT. In Table 6.7 we show the result of our
comparative study. First, we focus on Pub/Sub protocols, to enable event-triggered data
transmission and avoid unnecessary polling. Also, since accurate detection of pedestrians
and cyclists in our scenario needs to aggregate sensor data in a single processing point, a
protocol designed for centralized processing is more desirable than a distributed protocol.
Another desirable feature is the possibility to choose between different Quality of Service
(QoS) levels according to provided latency. A good level of security should also be provided
since no malicious users should be able to inject fake detection data and potentially
causing trouble. Finally, we want to ensure that the header size of each message is low,
to reduce network load. Based on our analysis, we do not select CoAP and AMQP since
they do not offer a publish/subscribe communication model. Between publish/subscribe
protocols (DDS and MQTT) we select MQTT, due to its lower overhead and the fact
that it is most suited for centralized processing.

Quality of Service. Besides strict low-latency of delivery, Intrasafed communication layer
has also to provide guarantees on delivery of the notification. Indeed, the potential effects
of unreliable communication might cause the loss of important updates, with negative
effects on traffic safety. Since our communication layer is based on the MQTT protocol,

Table 6.7: Comparative study of IoT protocols. Pub/Sub = Publish/Subscribe; R/R =
Request/Reply; P2P = Point to Point.

Protocol Paradigm Processing QoS
levels Security Header

size [bytes]
CoAP R/R Distributed 4 DTLS 4
DDS Pub/Sub Distributed 5 TLS 48

AMQP P2P Impl. specific 3 TLS 8
MQTT Pub/Sub Centralized 3 TLS/SSL 2

98

6.2. System Deployment and a Performance Evaluation of Traffic Safety with Edge and 5G

we focus on MQTT QoS layers.

MQTT offers three different QoS levels: QoS 0, where messages are delivered AT MOST
ONCE (no guarantee on message delivery); QoS 1, where messages are delivered AT
LEAST ONCE (message delivery is guaranteed, but replications might occur); and QoS
2, where messages are delivered EXACTLY ONCE. Since selected QoS level affects the
latency of notifications, we measure the latency of MQTT messages in our scenario using
different QoS levels.

Latency measurements are performed employing a self-developed Android mobile app,
which first subscribes to a specific topic, then it sends a message with a unique id using
the same topic. Once it receives the same messages, it calculates the latency based on
the round-trip time of the message. The payload of the message is set to 64 bytes that is
realistic for the amount of data managed by the application (the number of pedestrians
and cyclists in a blind spot).

Figure 6.12 shows network latency offered by different QoS levels on different network
layers (3G, 4G and 5G). Results are obtained by calculating the average latency of
100 messages, for statistical significance. From the plot, we see that in most of the
cases average notification latency falls within the requirements of tens to hundreds of
milliseconds for road safety applications [18]. However, when selecting QoS 2, the 95%
confidence interval of our measurements for 3G includes values above 1000ms. For this
reason, we select QoS 1, which ensures latency below 800ms in the worst case (3G,
QoS 1). Also, in our scenario, the average notification latency is 109.35ms and 90.95ms,
respectively for 4G and 5G.

Protocol Setup. Finally, we describe the general MQTT protocol setup. MQTT message
routing relies on a software component called MQTT broker, which receives messages

Figure 6.12: MQTT network latency observations for QoS={0, 1, 2} over different network
types (3G, 4G and 5G).

99

6. Evaluation

Figure 6.13: MQTT network latency for QoS=1 w.r.t. edge/cloud broker placement.

published by different clients (publishers) and forwards them to clients subscribed to the
messages’ topic (subscribers). In the target scenario, each camera with RPi represents a
publisher, and a mobile app is a subscriber. In the current prototype, topic subscriptions
are set up when the application is started. In future work, we plan to investigate location-
based subscriptions, as described by [177]. We select Mosquitto MQTT broker [178],
which offers enough security and flexibility for our requirements.

Each client has to be able to access the MQTT broker over the Internet. Since latency
is the main requirement of our application, we evaluate the latency of deploying the
broker at the edge (inside TU Wien’s network infrastructure) or using a cloud service
instead. Evaluation of latency of both deployments is shown in Figure 6.13. We can see
that edge deployment significantly reduces the latency (up to 50.20% and 47.18% for 4G
and 5G networks, respectively), making edge broker placement as the best choice for our
latency-critical scenario.

6.2.2 Design Choices

Based on the proposed system design, InTraSafEd 5G collects video frames from cameras
deployed on smart traffic lights, targeting drivers’ blind spots. Video frames are then
processed by an object detection algorithm, implemented using Python 3.7, to identify
critical situations (e.g., pedestrians and cyclists outside drivers’ field of vision). To this
end, we (i) deployed edge nodes using RPi 4B, to which we attached a camera and
Edge TPU (Coral USB Accelerator) to speed up object detection (see Figure 6.14a)
and (ii) set up a network connection using a HTC 5G Hub (5G network coverage is set
exclusively for the prototype deployment). We placed the edge node (above) and 5G Hub
(under) specific traffic lights (see Figure 6.14b). Figure 6.15a illustrates the detection
of pedestrians in drivers’ blind spots (e.g., behind bushes or bus stations) by installed

100

6.2. System Deployment and a Performance Evaluation of Traffic Safety with Edge and 5G

(a) Edge node deployment. (b) Smart traffic light integration.

Figure 6.14: Edge nodes setup on Vienna’s chosen intersection and the integration into
the traffic-signal chambers.

edge nodes. Results from different edge nodes are then aggregated and audio and visual
notifications are sent to the driver’s mobile device if a critical situation is detected while
a driver approaches the covered intersection (see Figure 6.15b).

6.2.3 Mobile Client

Notifications of critical situations are sent to a mobile client installed on the driver’s
mobile phone. InTraSafEd 5G mobile client is developed for Android 10 using Kotlin.
We leave the implementation of iOS and Windows Phone versions for future work.
The application works as follows: first, the app subscribes to the topic representing a
monitored critical area and registers to the broker. Once the message is received, the app
visualizes a message using overlays and playing an audio notification. Communication
with the MQTT broker is performed through the PAHO MQTT library 1.1 for Android,
while the location is obtained using the mobile phone’s GPS and Google Maps SDK
v3.1.0. An example of the mobile client interface is shown in Figure 6.15b.

6.2.4 Discussion

Transmission latency on 5G is measured to be around 90.95ms for QoS 1, which guarantees
enough time for timely notifications. Regarding the computational performance on the
edge device, object detection on camera-collected frames takes around 17.78ms using a
lightweight RPi 4 with Edge TPU. This solution not only reduces cost while providing
high-level performance, but also allows increased privacy, as data taken by cameras do not
travel over the network nor need to be stored on the devices. Overall, in our InTraSafEd

101

6. Evaluation

(a) Pedestrian detection. (b) Screenshot of user application.

Figure 6.15: Real-time edge analytics demonstration for increasing traffic safety. Subfigure
(a) shows the output of object detection (during the project demonstration day) on edge
node Raspberry Pi 4B, while Subfigure (b) shows the application running on the driver’s
Samsung S20 5G phone.

5G use case, detection of pedestrians on the crossroad together with the required latency
to notify drivers results in 108.73ms on average.

We also observed that the proposed system with QoS level 0 results in overall latency
of 32.26ms on average for 5G. However, although this QoS level does not guarantee the
delivery of notifications, it is appropriate in situations where (i) the connection is reliable
(e.g., cellular antennas deployed close to the target area), and (ii) message loss on a small
scale would not affect the early warning system (e.g., capturing and processing higher
frame rates). Still, in future work we plan to investigate the scale of message loss using
QoS level 0.

The installation of the proposed solution on a higher scale of a metropolitan area,
would require (i) identification of important intersections, (ii) installation of 5G network
coverage, (iii) integration of the proposed design choices, and (iv) owning a 5G-enabled
phone. Although using 5G connection can offer the full benefits of the proposed solution,
(i) owning a 5G-enabled phone can be costly for users, as well as (ii) installing 5G coverage
in all areas. However, as we showed, the proposed solution is designed to work also with
common 3G/4G enabled phones and network types, (e.g., 3G and 4G only available

102

6.3. Self-adaptive and Locality-aware Edge Analytics Placement Evaluation

in rural areas of the city), still within acceptable total latency of 760.94ms (3G) and
127.13ms (4G) on average for QoS 1. Furthermore, the cost of edge hardware integration
should be in the range of € 200 on average for edge configuration such as RPi 4B, 8MP
Camera Module V2 and Edge TPU.

6.3 Self-adaptive and Locality-aware Edge Analytics
Placement Evaluation

SEA-LEAP system presented in Section 5.2 is implemented using Python, and has
been evaluated conducting experiments on (i) real-world video analytics application;
(ii) real-world sets of video frames as input for the application; (iii) obtained network
and inference benchmarks, and (iv) heterogeneous edge infrastructure using Kubernetes
platform. Our emulation-based evaluation utilizes RuconLiveLab, our physical edge
infrastructure consisting of 11 Raspberry Pi (RPi) single-board computers, available
in three different configurations (see Table 6.8). Experimental results showed that the
proposed SEA-LEAP can (i) autonomously deploy on-demand analytics requests (e.g.,
object detection) considering data locality, and (ii) reduce overall request execution time.

6.3.1 Implementation Details

We first introduce technologies used for the experimental evaluation of the proposed
SEA-LEAP. Considering the deployment of analytics applications, many researchers
and industries are revealing nowadays the rapid adoption of Kubernetes orchestration
platform [165, 166], relying on master-worker architecture. The master node is, in our
scenario, responsible to assign a container-based analytics application to one of the
available nodes in the corresponding cluster. Containerized applications are typically
using Docker, a container platform used to build and isolate applications with a relevant
stack of services. Here, to deploy an analytics application to edge nodes, a docker image
has to be included in the Kubernetes manifest, i.e., deployment file, typically defined in
YAML (described later in Section 6.3.5 and shown in Figure 6.18).

6.3.2 Target Application

We consider as our target application object detection, a typical video analytics processing
in which an input set of video frames is analyzed. Analytics output is a list of detected
objects with confidence levels and their positions on the image. We assume that edge
keeps only a limited number of frames, e.g., sampling an industry-standard frame rate of
30fps and filtering only frames with significant changes or object movements, due to the
limited capacity of edge nodes and efficient bandwidth usage [73].

In this experimental setup, we used the computation logic from our real-world application
InTraSafEd 5G (introduced in Section 5.1 and evaluated in Section 6.2), used to perform
object detection analytics to increase traffic and pedestrian safety with edge and 5G
in the city of Vienna. The analytics application runs a quantized version of the SSD

103

6. Evaluation

Table
6.8:

Edge
node

types
used

in
the

experim
entalsetup,technicaldetails

and
inference

latency
benchm

arks
for

each
node

type.

N
ode

label
N
ode

type
C
P
U

R
A
M

#
of

nodes
E
dge

T
P
U

Inference/fram
e

[m
s]

A
R
aspberry

Pi4
Q
uad-core

C
ortex-A

72
(A

R
M
v7)

at
1.5G

H
z

4G
B

2
yes

17.81
B

R
aspberry

Pi4
Q
uad-core

C
ortex-A

72
(A

R
M
v7)

at
1.5G

H
z

4G
B

1
no

250.74
C

R
aspberry

Pi3
B+

Q
uad-core

C
ortex-A

53
(A

R
M
v7)

at
1.4G

H
z

1G
B

8
no

500.62

Table
6.9:

M
ain

characteristics
ofdatasets

for
SEA

-LEA
P

evaluation.

D
ataset

nam
e

Fram
es

Size
[M

B
]

Size/fram
e
[M

B
]

D
im

ensions
Intrasafed

600
91.4

0.15
1280x720

Penn-Fudan
60

25.2
0.42

various
Sherbrooke

1800
154

0.09
800x600

R
ené-Lévesque

3600
1011.8

0.28
1280x720

104

6.3. Self-adaptive and Locality-aware Edge Analytics Placement Evaluation

MobileNet v2 model [85], a lightweight and pre-trained convolutional neural network
(CNN) based object detection. We dockerized the object detection logic and expose it
as a service running in a container. Docker images for all node types, with and without
edge TPU attached (Coral USB Accelerator enabling high-performance neural network
inference), are publicly available on the Docker hub repository2, while the SEA-LEAP
implementation is accessible on the GitHub repository3. Further, we used a PostgreSQL
database running in a docker container to store metadata, i.e., location-related details
about existing datasets.

6.3.3 Input Datasets

We evaluate proposed approaches using datasets typically used in computer vision
analytics applications such as object detection and recognition [124]. To perform a
complete evaluation, we select datasets of a different average size of image files, which
allows having a wide diversity in terms of resolution, dimensions, and color depth. The
main characteristics of datasets are presented in Table 6.9. For each dataset, we show
the average size-frame ratio (γ) calculated as γ(d) = size(d)/no_frames(d), impacting
SEA-LEAP placement optimizer (explained in Section 6.3.5).

• Dataset Intrasafed comes from the InTraSafEd 5G project, containing sampled
video frames from the chosen Vienna’s intersection used for the real-time detection
of critical situations and to support drivers in avoiding accidents. The frames are
taken by traffic cameras and show critical situations where objects like pedestrians,
cyclists, and pets, can appear in drivers’ blind spots when turning on intersections.

• Dataset Penn-Fudan comes from an image database used for object detection
and recognition on areas around campus and streets around the University of
Pennsylvania and Fudan University [179]. Selected frames represent various image
qualities and angles of captured objects (pedestrians, bikes, and cars).

• Datasets Sherbrooke and René-Lévesque come from the cameras monitoring different
intersections, used for detecting and tracking multiple objects of various types in
outdoor urban traffic surveillance [180]. Selected image frames represent different
camera angles and resolutions, namely, a low camera monitoring cars, trucks, and
pedestrians moving at an intersection (Sherbrooke) and a high camera covering
three intersections with cars and bikes (René-Lévesque).

6.3.4 Testbed Configuration

In the experimental setup, we emulated a real-world system from our InTraSafEd 5G
project, where node communication is handled by the MQTT broker, communicating to
distant edge nodes deployed on traffic lights near a short-range cellular base station. Since

2https://hub.docker.com/r/ilujic/inference-arm32v7/
3https://github.com/lujic/sea-leap

105

6. Evaluation

Figure 6.16: Network latency for cloud/edge meta-server placement.

latency is a critical requirement for our scenario, we evaluated the latency of deploying
the broker either at the edge (inside the TU Wien’s infrastructure) or using cloud service
(hosted on MyQttHub). Network latency evaluation is shown in Figure 6.16. We can see
that edge deployment significantly reduces the latency (by 14.01%, 70.18%, 83.04% on
average for 3G, 4G and 5G, respectively), making the edge meta-server placement as the
best option for our setup.

Emulating and extending this real-world scenario, Figure 6.17 shows our testbed con-
figuration as well as an initial setup based on different edge sites (E1-E5). Edge sites
represent small cells in a cellular network, featuring short-radius coverage of a small cell
base station (as used in [171]), providing specific network connection types. Each site can
contain one or multiple edge clusters, where our setup contains multi-node (i.e., E1 and
E3 including 3-node clusters, E2 including 2-node cluster) and single-node (i.e., E4 and
E5) Kubernetes clusters. Edge meta-server represents a more reliable node or edge micro
data center, able to communicate with edge nodes from different sites. Meta-scheduler
receives from a user the description of an analytics request with a specific dataset.

We evaluate our emulation-based approach with the containerized analytics application,
where as a baseline, we measured inference times on the real-world datasets using our
physical edge nodes, as described in Table 6.8. For each node type, we show the average
inference time per single image. Results are averaged over 100 image frames for statistical
significance since by adding more images the differences in inference time show a deviation
of 39µs on average. These results are saved in the KB, which is used by Algorithm 8
for selecting the node which minimizes the latency of edge analytics placement. Further,
Table 6.10 shows different latency and bandwidth measurements obtained using standard
iperf application. The representative values are weighted averages of bandwidth collected
on different network types in a suburb area of Vienna from the InTraSafEd 5G project
and will be used in the placement optimizer (Section 6.3.5).

106

6.3. Self-adaptive and Locality-aware Edge Analytics Placement Evaluation

(a) The emulation-based scenario and network topology.

(b) Edge infrastructure overview.

Figure 6.17: SEA-LEAP testbed configuration.

Table 6.10: Network latency and bandwidth benchmark (Vienna’s suburb).

Network type Latency [ms] Bandwidth [Mbps]
3G 247.92 8.81
4G 23.44 41.43
5G 13.83 66.55

107

6. Evaluation

6.3.5 SEA-LEAP Evaluation

Static placement evaluation

Based on the GuideMe action (Section 5.2.5), the SEA-LEAP placement optimizer will
enable the execution of the user’s request on a node storing the required dataset, i.e.,
without considering alternative candidates (considered in Section 6.3.5). In the case
of multiple locations storing the dataset, a node showing better performances (node
type with a lower inference benchmark observation) will be prioritized. Otherwise, the
algorithm will randomly select one of them. However, to enable the analytics execution
on a target node using the requested dataset, the meta-scheduler needs to add a set of
placement-specific details into a Kubernetes deployment file.

In our design, the meta-scheduler already stores different deployment templates that
will be adapted with a specific set of information such as the node location, appropriate
container image of the analytics application, and the dataset path on the target node
(using hostPath as a volume). A simple example of an adapted deployment file is showed in
Figure 6.18. Based on specific lines from this description (i.e., the one including keyword
nodeName), a distant master node will know where to place the analytics application in
its cluster using the default scheduler. Beforehand, the edge meta-server is created as a
single-node Kubernetes cluster and enabled to communicate to multiple clusters, using
so-called Kubernetes configuration files with needed details (e.g., IP addresses of master
nodes from our testbed edge sites).

Followed by a meta-scheduler command to process a certain input dataset on the exposed
analytics application, the obtained results can be forwarded back to a user. That said,
the proposed SEA-LEAP meta-scheduler is designed as a new service that can be used
on top of existing schedulers as a feature in different edge scenarios that require data
locality-aware analytics placement.

Figure 6.18: SEA-LEAP deployment YAML file example.

108

6.3. Self-adaptive and Locality-aware Edge Analytics Placement Evaluation

Adaptive data movement evaluation

In this experiment, we want to evaluate the FollowMe action (see Section 5.2.5), SEA-
LEAP placement optimizer will consider alternative location candidates different than
the initial node storing the required dataset, and select the option with the lowest total
latency. Thus, the placement algorithm (Algorithm 8) estimates the total latency (based
on details from the knowledge base KB) including the transfer of requested data from
the source to an alternative node location.

Figure 6.19 shows the results of the SEA-LEAP placement optimizer applied to each
dataset from Table 6.9. In this representative example, the source node location of a
dataset is set to the edge site E1. For that reason, the source location from E1 represents
at the same time an initial candidate for analytics placement. Other alternative candidates
will include additional network latency due to needed dataset transfer. Green and yellow
shaded locations show first and second-best candidates, respectively.

For dataset Intrasafed (see Figure 6.19a), the selected appropriate node location for
analytics placement in each network type results in moving the dataset from the source
node storing the dataset (to an alternative candidate location from E5). In all cases of
3G (low), 4G (medium), and 5G (high) network conditions, we are able to decrease the
total latency by 13.47%, 78.81%, and 85.46%, respectively, by moving the dataset to a
candidate location in E5.

For dataset Penn-Fudan (see Figure 6.19b), in low network conditions, the selected
appropriate node location for analytics placement will be in the source location storing
the dataset, while for medium and high network conditions the total latency becomes
47.77% and 66.14% lower by moving dataset to an alternative location candidate. At
the same time, even in the scenarios where the most appropriate location cannot host
the analytics application or the dataset for different reasons (e.g., limited capacity, high
failure probability), selecting the second-best candidate can still achieve 17.44% and
29.70% lower total latency by selecting a location candidate in E4, for medium and high
network conditions, respectively.

For dataset Sherbrooke (see Figure 6.19c), for all networks types, moving dataset can
bring 49.86% (3G), 86.54% (4G), and 90.28% (5G) lower latency than in the source
node location initially storing the dataset. The dataset René-Lévesque (see Figure 6.19d)
with the largest number of frames and overall size can benefit from better network
conditions, achieving 63.92% and 76.20% lower total latency for medium and high
bandwidth availability, respectively.

To evaluate the optimizer’s applicability to near real-time systems, we measure its runtime,
included in the total latency, averaged over 100 times for statistical significance. We
observe an average runtime of 1.41ms for the real testbed (see Figure 6.17). We also
evaluate average runtime by increasing the number of candidate nodes up to 100, resulting
in 13.89ms and 26.29ms respectively with 1 or 2 source node locations.

109

6. Evaluation

(a) Intrasafed (b) Penn-Fudan

(c) Sherbrooke (d) René-Lévesque

Figure 6.19: SEA-LEAP placement calculation of node location candidates in different
edge sites, driven by GuideMe and FollowMe actions. It is based on network connection
benchmarks from a real-world edge location. For all cases, the source location of the
dataset is set to E1.

Discussion

The results show benefits of the proposed SEA-LEAP, it allows (i) an autonomous
placement of analytics requests, and (ii) the self-adaptation to data locality by considering
both network and node candidate characteristics. For example, although node types A

110

6.3. Self-adaptive and Locality-aware Edge Analytics Placement Evaluation

and B from our experimental setup have respectively 28x and 2x lower inference time
per frame compared to the source node type C (see Figure 6.17), not all datasets benefit
from their movements if available bandwidth is low.

Despite different network characteristics of different edge sites, the network performance
will depend on the available network bound of a node location storing the dataset.
As described in Section 5.2.5, the total latency of placing analytics to new location
candidates will be also impacted by other factors such as network latency, number of
hops, analytics execution time, and dataset size. Still, based on the experimental results,
moving the dataset to another location we can reduce total latency by 65.85% on average.
To determine these cases, Figure 6.20 shows the SEA-LEAP placement decision rule
and which aspects have strong impacts on it. The estimated total latency of analytics
placement is largely affected by two main aspects, namely, network bound (available
bandwidth) and compute (node performance) bound.

Figure 6.20a shows the relation between the average image file size and network through-
put. We see that the higher the bandwidth, the higher is the network bound for
transferring a certain number of image frames for a specific dataset. However, this
relation does not hold for the compute-bound of a specific node candidate in this context.
This is because the target object detection application resizes each input frame to the
same dimension due to performance reasons. Since resizing does not affect the accuracy
of object detection, the average inference per frame (i.e., compute-bound) will stay the
same, independent of the dimension or size of a single image frame. Consequently, the
computation time for a specific edge node type will depend exclusively on the number of
input image frames.

For example, in Figure 6.20b, the number of input image frames for each dataset is set
to 60, while the initial candidate for analytics placement is a source node type B, and
only alternative node candidates with lower inference time per frame are considered,
i.e., node type A. The solid black line represents the compute-bound of the source node
B as the baseline, i.e., the total latency of running requested analytics on the dataset
in the source location is equal to ∼15s (60 · 250.74ms). Dashed lines represent the
estimated total latency of running the analytics on the datasets in alternative node
candidates, including data transfer over different network characteristics with two hops.
Depending on the available bandwidth in the source location, the self-adaptive SEA-
LEAP placement optimizer will decide whether to place analytics to (i) the initial location
storing the dataset (GuideMe) for all results above the baseline, or (ii) a new location
where the dataset is also moved (FollowMe) for all results below the baseline. Our
self-adaptive solution shows that considering data locality in edge analytics placement
can significantly improve overall analytics requests execution time, and thus impacting
the timely placement of on-demand analytics applications.

111

6. Evaluation

(a) Network bound

(b) Placement decision

Figure 6.20: SEA-LEAP placement decision. Subfigure (a) shows network bounds for
various image file sizes. Subfigure (b) shows a borderline of placing analytics between
the source node B and a new node A, among different datasets (60 frames) and available
bandwidths with two hops.

112

CHAPTER 7
Related Work

In this chapter, we provide a comprehensive overview and discussions of the state-of-
the-art on performing data analytics in heterogeneous and resource-constrained edge
environments. We investigate related work and limitations of previous solutions consider-
ing five main aspects, namely, (i) IoT data and resource-limited edge systems (Section
7.1), (ii) edge data management (Section 7.2), (iii) elastic edge data and storage services
for decision making (Section 7.3), (iv) time-critical edge analytics systems (Section 7.4),
(v) data locality-aware edge analytics placement (Section 7.5).

7.1 IoT Data and Resource-limited Edge Systems
Regarding integration of IoT sensors and cloud computing systems, Villari et al. [9]
discussed scenarios of large streams of data coming from IoT sensors while at the same
time IoT systems require a short response time of data analytics. Further, they provide
an overview of four macro objectives in interconnecting IoT and cloud concepts including
integration, configuration, communication, and security. Since IoT devices are usually
not equipped with powerful resources needed for data processing, edge computing has
been proposed as a novel methodology for exploitation of computation, storage and
networking resources across cloud boundaries, as discussed also in Bittencourt et al. [19]
and Baccarelli et al. [27].

De Maio et al. [181] discussed enabling IoT and mobile devices to extend their computing
power and storage by offloading computation or data to more powerful servers on single-
hop proximity such as edge nodes. Lewis et al. [182] proposed the first catalog of
architectural tactics for cyber-foraging. Cyber-foraging depicts architecture elements
helping to extend battery life and improve computational capabilities of mobile sensors
and devices in the future. To enable latency-sensitive applications and to minimize data
transmission over the network, movement of functionality from the cloud to the edge
devices requires a reliable data management system with the support from IoT layer.

113

7. Related Work

Recent technological advances have disrupted the current centralized cloud computing
model by moving cloud resources close to users, as it is examined in Villari et al.
[21]. Proposed osmotic computing depicts the dynamic management of services and
microservices across cloud data centers and edge nodes. A comprehensive analysis of
the advantages of having the intermediate layer consisting of these edge micro data
centers close to the network edge has been done also by Mehta et al. [183]. The results
show that for data-intensive applications it is inevitable to place data processing tasks
close to the source of data. Additionally, this approach can reduce energy consumption
affected by data transmission, storage and processing of big data. Edge computing can
provide a distributed infrastructure at the edge of the Internet where edge nodes have
limited resources. Bittencourt et al. [14] examined scheduling strategies to cope with
different application classes according to demands coming from mobile users. Although
there are many studies in processing IoT data in resource-constrained edge systems, the
state-of-the-art still lacks contributions in efficient data-centric services for near real-time
edge analytics.

7.2 Edge Data Management

Regarding the proposed edge data management mechanisms in Chapter 3, we provide
the related work through four parts, namely, (i) time-series sensor data and predictive
analytics, (ii) recovery of incomplete datasets, (iii) edge storage management, and (iv)
edge data management systems and frameworks.

Time-series sensor data and predictive analytics

In the last few decades, time series forecasting gained much attention due to necessary
predictive analytics that rely on the increasing amount of time-stamped measurements.
Herbst et al. [111] provided an extensive overview of existing time series forecast methods,
including a self-adaptive approach for optimized forecasting method selection based
on users’ forecasting objectives. Regarding contribution in time series forecasting and
statistical research, Hyndman et al. [184] proposed a forecast package that includes
implementation of automatic versions of most popular forecasting methods such as
Autoregressive Integrated Moving Average (ARIMA) and ExponenTial Smoothing (ETS).
Considering the proposed approaches in this thesis, the use of different forecasting
methods is motivated by the fact that forecast accuracy depends on the characteristics
and behavior of data points preceding each gap. Therefore, we considered methods
like ARIMA and ETS, and TBATS, described in [78, 113], which are also suitable for
near real-time decisions in IoT since they do not require constant user interaction. We
use these methods for adaptive recovery of multiple gaps, due to the near real-time
requirements of systems, running on self-contained edge nodes. Regarding data mining
in time series, Ding et al. [185] provided a comprehensive validation of representation
methods for dimensionality reduction and similarity measures in time series datasets.

114

7.2. Edge Data Management

Recovery of incomplete datasets

Wellenzohn et al. [186] propose Top-k Case Matching (TKCM) for imputing missing
values in time series. Based on principles of correlation between time series, it is possible
to impute missing values in streams of data by comparing incomplete series with a set
of reference time series, and additionally allowing phase shifts. In [187], a program for
imputing missing data in multivariate time series is proposed for handling missing data
from stationary processes. Since most of the IoT measured processes are non-stationary,
the proposed approach cannot be easily applied and can be inefficient for univariate time
series. Also, none of the proposed approaches allows recovering multiple gaps separately
giving the possibility to select different models for recovery. Honaker et al. [188] describe
the reconstruction of missing values in time series cross-section data proposing multiple
imputation models, focusing only on imputing a small number of public-use datasets in
surveys with many variables. Duan et al. [189] design an adaptive model selection based
on Hidden Markov models aiming to constantly validate mean percentage error in a
prediction algorithm, resulting in higher accuracy in time series of stock price prediction.
The approach constantly validates mean percentage error to find the best model. However,
machine learning-based models for the prediction of missing data are time-consuming
and require training, making these approaches difficult for data recovery on most of the
resource-constrained edge devices.

Furthermore, in [190], univariate imputation is used for air pollution data, but this
approach target gaps of fixed size. The challenge of recovering missing data has been
investigated by many researchers, providing methods relying on cubic interpolation [191],
Singular Spectrum Analysis [192] or Lomb-Scargle method [193]. However, these works
either have not been validated on IoT sources or propose approaches targeting only specific
cases of time series. In this thesis, we show how to combine different forecasting techniques
for the recovery of different gaps affecting both, the accuracy and performance of recovering
processes. Additionally, the proposed approach allows users to specify preferred conditions
and define other algorithms for recovering incomplete data. Accordingly, our proposed
edge data management framework in this thesis is designed in a generic way, such that
depending on the application context and sensor data characteristics, different methods
can be utilized for both data recovery mechanism and adaptive edge storage management.

Edge storage management

Many applications can benefit from edge computing, but existing solutions are usually
not made for the edge layer, leaving many research issues for novel data management
approaches. The problem of reducing data transmission on the edge has been surveyed
by several works. Papageorgiou et al. [105] proposed a solution for network-edge data
reduction targeting IoT devices, but does not consider storage problems and latency
requirements of IoT applications. It automates the switching between different data
handling algorithms at the network edge and evaluates specifically for IoT devices and
datasets. Further, Abu-Elkheir et al. [194] focus on data management solutions, proposing
a comprehensive description of components of IoT data management framework, focusing

115

7. Related Work

on data collection, storage, and processing. The authors mostly target design elements for
efficient data handling. Ukil et al. [106] propose a dynamic compression-based technique
for sensor datasets. Other existing works, like [195], focus instead on data storage
structure, memory allocation strategy and data compression in order to efficiently use
storage capacity. All these works try to reduce datasets size by maximizing compression
of generated data while reducing information loss, but do not consider the impact on
real-time needs for sensor-based monitoring systems and corresponding actuators.

According to Sensor-Cloud Infrastructure [104], it is possible to employ service innovation
to accelerate decision-making. These challenges have been considered from traditional
IoT and cloud perspectives [8, 31], but cannot be used due to edge limited storage.
Existing works, like [196, 197] propose data staging for edge nodes including a control
loop where the data staging manager takes care of retrieving and caching necessary data
from the cloud. Proposing predefined fetching algorithms, these approaches are suitable
for a scenario where data are available to the mobile devices when it is needed, but it is
not suitable for our case, where we need to obtain fast and accurate responses. Plus, their
contributions consider neither the performance of storage limited edge nodes, nor the
possibility of targeting actuators with reliable predictions. In comparison with traditional
batch data analysis, data stream classification has many open issues. In [198], holdout
accuracy is estimated using prequential accuracy. In other works, two types of methods
are used: a sliding window with the most recent observations or fading factors that weigh
observations using a certain decay factor [199, 198]. However, these approaches do not
consider the prediction of upcoming data streams together with historical data. Our
approach proposes an adaptive algorithm that constantly checks newly received data and
then together with the remaining old data performs proposed principles for efficient edge
storage management.

Edge data management systems and frameworks

Montella et al. [200] target the resilience and privacy of sensitive data in delay tolerant
networks. Other solutions target resilient edge systems for IoT data management and
cloud, focusing on system resource management [4], location-based energy control [2],
network congestion [100], security [101] or data integrity [201]. Others [202, 9, 107],
describe the interplay and communication models for cloud and IoT resources due to
growing data streaming and increasing latency issues of smart sensors. These works do
not discuss critical decision-making processes at the edge.

Regarding industrial frameworks, collection and data analysis at the edge is the basis
of industrial cloud platforms such as AWS IoT Greengrass1, focuses on event-driven
computing and performs data storage on the cloud, rather than on the edge; Azure
IoT Edge2 employs containers to package modules and custom logic at the edge. AWS
IoT Analytics3 offers remote device management, optimized IoT data storage, and time

1https://aws.amazon.com/greengrass/
2https://azure.microsoft.com/en-us/services/iot-edge/
3https://docs.aws.amazon.com/iotanalytics/

116

7.3. Elastic Edge Data and Storage Services for Decision Making

series analytics, enabling end-to-end workflow automation for large amounts of data and
connecting IoT devices with cloud applications. Eclipse Kura4 represents a reference IoT
Edge framework for building IoT gateways, incorporating networking protocols, and data
services, allowing connectivity of IoT devices to their cloud platform. These approaches
focus on fully managed workload services instead of edge data management on limited
storage and adaptive data recovery with multiple techniques.

7.3 Elastic Edge Data and Storage Services for Decision
Making

We surveyed existing works on elastic edge data and storage services for decision making
from three aspects, namely, (i) system viewpoint, (ii) application viewpoint, and (iii)
design viewpoint. Further, we also show a comparative overview of relevant works
regarding analyzed requirements from Section 4.

System viewpoint

Various system operations have been used to build efficient edge storage. For example,
Ali et al. [35] discussed a data life cycle while investigating the optimization of storage
mechanisms and data management system design for the IoT. To improve the cost and
efficiency of the data collection and robustness in IoT systems, Sinaeepourfard et al. [36]
proposed distributed data storage subsystems instead of centralized data management
solutions. The concept of data-centric communication [34], looked for enhancing network
connectivity with local storage services, proposing different management strategies to
handle stored data from a system viewpoint.

Application viewpoint

According to [203], it is possible to assign dynamic routes for IoT data based on application
context information, considering four objectives, namely, lifetime, delay, reliability and
data delivery. However, in this approach, only the network viewpoint is examined. He
et al. [123] proposed a Storage-as-a-Service model where unused storage space can be
shared as a cloud-based service for different applications. In most IoT applications,
collected data are sent to a remote server for storage and analysis [120, 204]. Existing
controllers for auto-scaling of resources in cloud data centers mostly rely on a set of
predefined rules and static threshold-based policies [205]. Jamshidi et al. [206] proposed
a self-learning controller of rules adaption for cloud-deployed applications based on
reinforcement learning. However, due to the resource limitations at the network edge, it
would be infeasible to perform compute-intensive training processes.

4https://www.eclipse.org/kura/

117

7. Related Work

Design viewpoint

Some of the high-level requirements for dealing with a new design of the edge storage
service are in line with IoT common design principles [207], but such IoT common
principles do not dig into edge storage services and analytics scenarios. Weyns et al. [208]
discusses architecture designs for IoT management and adaptation, but not about the
design for edge data services. However, they have certain tools to evaluate the design
models, while we have focused on requirements, architectural models and engineering
principles. High-level self-adaptation for edge computing has been discussed in [209]. But
it is too high-level and does not focus on edge storage services for application contexts.
Table 7.1 summarizes a comparative overview of other works that address relevant edge
storage-oriented characteristics. In our approach, we bridge the aforementioned gaps
leading to customized software-defined elastic edge storage services.

Table 7.1: An overview of relevant works for architecturing elastic edge data services.

Work Edging system
operations

Edge/system
characterization

Application
context

[36]
√

[210]
√

[33]
√

[35]
√

[34]
√ √

Our approach
√ √ √

7.4 Time-Critical Edge Analytics Systems

We address existing works considering the proposed system for increasing traffic safety
with real-time edge analytics, as described in Section 5.1. Danish et al. [40] addressed
multi-object tracking in urban settings using a network of edge devices. However, the
discussed use case only considered privacy, accuracy and performance. Liu et al. [159]
propose EdgeEye, a service enabling the development and execution of video analytics
applications. Luo et al. [158] show EdgeBox, an architecture for improving automatic
event detection in edge near real-time video analytics. Anandhalli et al. [211] discussed
video image processing algorithms for real-time tracking and counting vehicles using edge
devices. However, these works either do not consider strict low-latency requirements, or
have analytics placement using cloud, or target different problems than traffic safety.

Vehicular networks and Vehicle-To-Everything (V2X) communication capabilities based
on 5G are investigated in [38]. It introduces a novel system design, targeting vehicles and
roadside infrastructure with V2X capabilities. To increase traffic safety, the concept of [39]
looked at the problem from a perspective of intelligent driving vehicles and real-time
lane-change recognition. We focus on real-time edge analytics and high transmission

118

7.5. Data Locality-Aware Edge Analytics Placement

mobile networks in designing a real-world prototype for detecting critical situations of
pedestrians and cyclists appearing in drivers’ blind spots on intersections.

7.5 Data Locality-Aware Edge Analytics Placement
Researchers proposed different frameworks and solutions for the placement of edge data
analytics, regarding the proposed approach in Section 5.2. We separate related work into
three parts, namely, (i) analytics placement and data management, (ii) latency-aware
scheduling and data locality, and (iii) placement decision and edge data analytics.

Analytics placement and data management

Analytics placement at the edge has been discussed in several recent works. Aazam et al.
[22] propose a service-oriented resource management framework for fog computing focusing
on service reliability, different types of service customers and their unpredictable relinquish
probabilities. Liu et al. [159] propose EdgeEye, a service enabling the development and
execution of video analytics applications. EdgeBox [158] is an architecture to improve
automatic event detection in edge near real-time video analytics. However, these works
limit placement to specific and centralized cloud/edge locations. Satyanarayanan et al.
[124] discuss the decentralized and federated edge infrastructure, focusing on a scalable
approach to perform data collection and video analytics at the edge of the network. Still,
these approaches do not consider data locality and adaptive analytics placement.

Current data management approaches adopt storage services configured toward centralized
data aggregation [212] or geo-distributed data storage [213]. Diène et al. [214] survey
existing solutions for IoT data management, including techniques for managing IoT
data gathering, their transfer and storage. In [73], the relationship between resource
availability and accuracy of edge-cloud video analytics are investigated, focusing on high
computational costs and CPU demands, but without considering data locality. In [162],
Firework system is described facilitating distributed data processing requests at different
connected edge nodes, considering only specific locations.

Latency-aware scheduling and data locality

Yi et al. [215] addressed the offloading of computation-intensive tasks on edge nodes
as an optimization problem. The proposed scheduling approach minimizes latency by
static offloading of dependent tasks according to input data. In [160] latency-aware
placement of data stream analytics applications is proposed, while Gupta et al. [161]
performed low-latency data management over geo-distributed and heterogeneous edge
infrastructures. We focus on a latency-aware placement of on-demand analytics using
data locality.

The exploitation of data locality has been considered by other works in literature. For
example, Venugopal et al. [163] discuss the concept of Semantic Cache, which employs
a caching technique for edge analytics while reducing latency compared to cloud-only

119

7. Related Work

inference. In [216], the spatio-temporal locality of analytics is used to improve workload
balancing between edge and cloud servers. Other works for analytics placement exploit
data locality considering the edge-cloud workload balance perspectives [41], the trade-off
between the resource usage and query accuracy [42], or the fairness of cloud resource
allocation [43]. However, these works either do not consider the autonomous placement
of on-demand analytics or focus on different aspects than minimizing requests execution
time. We bridge these gaps by considering data locality in the self-adaptive placement of
on-demand edge analytics.

Placement decision and edge data analytics

The service placement decisions and trade-offs between local execution and remote
execution are discussed in voluntary-based computing environments [217] and micro-cloud
infrastructures [218]. Further, Hamrouni et al. [219] proposed replica management and
replica selection strategies in data grids, based on data mining techniques. Furthermore,
concerning network service chaining at the edge, Kathiravelu et al. [220] looked at latency-
aware service execution through software-defined approaches. Most of these placement
decisions are based on either network performance or resource allocation aspects. In
this thesis, we target a data locality-aware, generic and self-adaptive mechanism that
facilitates the edge analytics deployment across different edge infrastructures, while
minimizing overall execution time for on-demand analytics.

In [221], big data processing and analytics at the edge is discussed from the point of view
of energy-efficient edge scheduling and the impact of energy on QoS. Luo et al. [222]
established a framework for offloading tasks to the edge, focusing mostly on minimizing
the delay and cost of the computation. In [223], the bandwidth-adjustment problem in
video-streaming is addressed, proposing a framework to reduce network traffic and adapt
to conditions of mobile users. Other works address caching of mobile big data traffic at
the edge [28], the container migration problem of mobile application tasks [224] or enable
federated query evaluations across cloud and fog nodes to reduce communication [225],
but data locality-aware analytics placement is not considered.

120

CHAPTER 8
Conclusion

In this chapter, we provide conclusions from the research done as well as the limitations
and constraints of the proposed solutions. We also outline possible future directions.

8.1 Summary

Edge computing has been proposed as a solution for near real-time decision-making
in rapidly growing IoT systems. Unlike performing data processing in highly reliable
and centralized cloud data centers, there are sustainability and trustworthiness concerns
regarding edge data analytics. This is because of the edge-specific problems such as
limited computational resources of edge nodes (i.e., edge servers, micro data centers,
single-board computers) and decentralized data locations posing difficulties for time-
critical analytics execution. Further, edge analytics faces us with the problems of making
accurate and near real-time decisions based on limited and often incomplete data. In
this thesis, we aim to improve decision-making processes for IoT systems proposing
data-centric services and approaches for edge infrastructures, making foundations for
sustainable and trustworthy edge data analytics.

First, to increase the accuracy of data analytics, particularly for time-sensitive IoT
applications, we introduced EDMFrame, a framework for edge data management featuring
(i) a mechanism for recovery of multiple gaps using both STR and PRM-based MTR
approaches, and (ii) a mechanism for accurate decision-making using limited storage
resources. Considering the self-adaptive data recovery, we are able to efficiently remove
outliers, detect and recover gaps of various lengths by incorporating recovery cycles in
incomplete datasets. Experimental results showed that EDMFrame is able to reduce
both the forecasting error and improve the overall running time of the recovering process.

Second, based on the presented architecture model for edge data storage management,
we proposed the adaptive algorithm to cope with constant streams of data and limited

121

8. Conclusion

edge storage. The proposed approach is able to continuously monitor forecast accuracy
and capture stable forecast accuracy clusters. Based on the proposed adaptive algorithm,
our simulation results showed that we are able to reduce the amount of edge-stored
data while satisfying demands for forecast accuracy in predictive analytics, and thereby
showing potential for saving limited edge storage space.

Third, IoT data-intensive applications pose big challenges to satisfy strict requirements
for timely and accurate data-driven decision-making and at the same time relying on
resource-constrained edge nodes. Thus, we aimed to dynamically define highly customized
optimization strategies to handle incoming data from different perspectives. Based on a
detailed analysis of edge storage requirements, we proposed a novel architectural design
incorporating elasticity in edge data services. Considering dynamic edge data workloads
and strict latency and accuracy requirements, we presented engineering principles and
how they can potentially be implemented. In this context, proposed approaches can help
researchers and practitioners to utilize resulted dependencies for edge data services at
runtime, achieving more sustainable edge analytics and data-driven decision-making.

Fourth, by deploying InTraSafEd 5G system we addressed the challenge of using the
potential of edge data analytics and modern communication technology (such as 5G) in a
real-world scenario, to increase traffic safety. We target critical situations on intersections,
e.g., pedestrians and cyclists appearing in drivers’ blind spots. After analyzing design
choices, we developed and evaluated a real-time edge analytics prototype. The proposed
system enables real-time (i) detection of critical situations by running object detection
on lightweight edge nodes; (ii) delivery of resulted critical information to vehicle drivers
with 5G. The proposed system is designed to preserve privacy and ensure low latency
with other network types, representing a promising step for trustworthy edge applications
and communication technologies to support real-time decision-making.

Finally, we looked at executing on-demand analytics requests and critical challenges
of data locality. We proposed SEA-LEAP, a Self-adaptive and Locality-aware Edge
Analytics Placement framework to (i) identify locations of requested input datasets, and
(ii) determine the most appropriate edge computational node. SEA-LEAP includes a
tracking mechanism for event-triggered data management and registration of data move-
ments. On top of it, we presented a generic control mechanism featuring a meta-scheduler
and placement optimizer. SEA-LEAP allows self-adaptive, on-the-fly placements of
on-demand analytics based on data locality, and minimizes overall request execution
time by performing adaptive data movements. We evaluated SEA-LEAP by considering
video analytics using our physical and heterogeneous edge infrastructure and obtained
benchmarks. Results showed benefits for users and developers, automating the place-
ment of analytics requests and reducing the total latency for certain network and node
characteristics. We believe that SEA-LEAP is a valuable step towards sustainable and
trustworthy on-demand analytics execution for edge multi-cluster or hybrid environments.

122

8.2. Limitations

8.2 Limitations
In this section, we state limitations and constraints of the work presented in this thesis.

Time sensitive edge analytics systems

Regarding edge data management and incomplete data, the recovering process depends
on multiple elements including the number of missing/invalid data points, gap sizes,
data characteristics, and the performance of used methods. Currently, our approach is
a semi-automatic approach, requiring certain predefined specifications by a user (e.g.,
selecting recovering methods in advance). In both data recovery and storage management
mechanisms, utilized methods such as ARIMA and ETS, expect historical and regularly
time-stamped data, and they are not often appropriate for some IoT streaming cases in
which data generation and collection are triggered by certain events. Also, the current
PRM calculation requires a predefined number of consecutive gap lengths, posing obstacles
in extreme cases of big gap lengths expected.

Practical applicability and deployments

The main limitations of the InTraSafEd 5G system design are (i) the driver’s app automat-
ically subscribes to topics of certain intersections and (ii) the real-time notifications start
showing when drivers’ distance is around 100m from the critical intersection. The first
limitation can cause a scalability problem in the case of a high number of intersections,
while in the second, the distance parameter can vary for different intersections causing
an important challenge in the real-world setup.

When considering analytics placements based on data locality, the SEA-LEAP placement
optimizer estimates total latency for initial and alternative candidate locations based on
prior obtained and managed edge-related details such as network characteristics (e.g.,
network types, number of hops) and analytics benchmarks on node types. Also, we
assume in our setup that edge nodes have access to existing docker images of analytics
applications. Still, we partially address these issues by designing SEA-LEAP parts as
generic services, which can be easily extended to consider (i) other analytics applications
and datasets (e.g., time series analytics for failure prevention in smart cities), (ii) different
network topologies and characteristics, and (iii) additional conditions for filtering location
candidates. In the SEA-LEAP, a centralized edge meta-server represents a single point
of failure, which could affect SEA-LEAP availability. Also, in the current version, we
assume a network of edge servers managed by trusted infrastructure providers that control
access to edge resources as well as handle data security issues. Even though accessing
metadata via the proposed meta-scheduler or through the tracking mechanism already
provides access control, we believe that additional protection measures could be taken,
especially in contexts where security is critical (e.g., use cases with sensitive information).
Lastly, we consider only data locality, while the resource allocation can be handled by
Kubernetes. As shown, our proposed approach can be integrated on top of existing
systems such as Kubernetes, facilitating data locality-aware edge analytics placement.

123

8. Conclusion

8.3 Future Work

Based on the presented work in this thesis and stated limitations in the previous section,
we look beyond the current context and outline potential future work.

In the case of a full-automatic mechanism of data recovery, based on data characteristics
and without user interaction, it would be interesting to explore how to automatically
trigger conditions for using different forecasting techniques. Moreover, it would be
interesting to investigate the possibility of recovering incomplete data based on correlated
time series. We also plan to extend our approach to scenarios with strict latency
requirements, such as eHealth and intelligent traffic management systems. In the first
case, we plan to use our approach for recovering data in monitoring illnesses such as
diabetes and heart diseases, helping such systems to timely react to the change of patients’
conditions. In the latter case, our mechanism can be used to recover datasets coming
from road sensors, helping to accurately and timely react before accidents or collisions
happen. Still, considering that these real-world cases can have event-triggered data
collection, in our EDMFrame we plan to address incomplete data issues by exploring
recurrent neural networks for time series with irregular timestamps (as in [226]), and
look at the interpolation of ranges to allow PRM calculation for such dynamic IoT cases.
As discussed, for future IoT services it is crucial to make fast decisions as in smart cities
requiring distributed ML at the edge, e.g., in the case of consistent ML models that must
be updated when data streams evolve over time, posing critical issues to observe correct
data at the right time [119]. Hence, we plan to explore using EDMFrame for reliable
distributed ML at the edge.

Considering edge storage management, we would like to extend our solution in different
ways. It would be interesting to explore methods for dealing with multiple data sources
and evaluate our application with different datasets, to show the wide applicability of
the proposed approaches. Considering other application contexts (e.g., smart cities and
industrial systems), we plan to further explore the design requirements of elastic edge
storage services to support data-driven decision-making, and focus on implementing a
prototype based on proposed principles in this thesis. Also, the combination of elasticity in
compute and network resources as well as implications of involved computation resources
during the runtime we left for future research.

Further, we plan to extend our two deployments of edge video analytics systems. In
InTraSafEd 5G system design for increasing traffic safety, we plan to explore location-
based subscriptions (as in [177]) to avoid the app’s automatic subscription to topics of
intersections when the app started. We plan to investigate the effect of distance and
warning timings on drivers’ brake reaction time, as in [145]. It would be also interesting
to improve the resilience of critical edge processing to network/node failures (e.g., using
container-based approaches for edge analytics). In the SEA-LEAP system design, we
plan to consider the single point of failure of the SEA-LEAP meta-scheduler by improving
its overall scalability and reliability, e,g., by using multiple instances and implementing
replication strategies of meta-dataset. We also plan to investigate the scalability of the

124

8.3. Future Work

tracking mechanism by experimenting with different edge storage platforms such as Ceph,
Minio, or other object storage technologies. Although the concept of accessing dataset
metadata via the meta-scheduler or using the proposed tracking mechanism for data
management actions can already reduce access to sensitive data, it would be interesting
to further investigate the privacy and the data protection of SEA-LEAP, and extend the
management of status data by adding an improved monitoring infrastructure.

Finally, it would be interesting to focus on collaborative data analytics and different
data representations. Since edge nodes are designed to perform data processing tasks for
(near) real-time analytics, cloud resources can utilize analytics results from the edge layer
and perform needed batch analytics or maintain global models on top of geographically
distributed edge infrastructures. Thus, it would be interesting to investigate how to
enable collaborative data analytics between cloud and edge. Considering that performing
data analytics on big IoT data can represent computationally expensive tasks, it would
be interesting to explore how to distribute data analytics among connected edge nodes,
where we expect an increase in data processing speed and better exploitation of edge
computational resources. The challenge of increased data processing speed could be
investigated from other aspects. In addition to classical sensor-based time series, one
of the related fields can include other data representations such as symbolic data rep-
resentation [185]. Symbolic data representation can reduce data dimensionality while
keeping its main characteristics. Due to the increasing production of time-series data,
such representation can impact new research directions of approximate analytics, further
reduce communication bottlenecks, improve data transfer and storage.

125

Glossary

CAGR Compound Annual Growth Rate is the average rate of return, one of the most
accurate measures to project an investment’s annual growth rate over time. 1, 3

CNN Convolutional Neural Networks is a class of artificial neural network used in image
processing for computer vision systems. It is composed of multiple layers of artificial
neurons (mathematical functions) with learnable weights to extract features from
images. 23–25, 96, 105

GSM The Global System for Mobile Communications (GSM) is a standard to describe
the protocols for the second-generation cellular network technology known as 2G,
developed by the European Telecommunications Standards Institute (ETSI). 15

hybrid environment refers to a cloud computing environment that combines or integrates
on-premises infrastructures, private and public cloud services with orchestration
management capabilities between these platforms. 10, 122

IoT Internet of Things is a system of networked physical objects, so called "things",
connected to the Internet with the purpose of collecting and sharing data with
other objects and systems. 1, 2, 32, 51

Kubernetes is a platform, developed by Google, representing one of the widely used
open-source orchestrators that automates deployment and management of con-
tainerized applications across multiple machines. 28

LTE The Long Term Evolution (LTE) is a standard to describe protocols for the fourth
generation cellular network technology known as 4G. 15

M2M Machine-to-machine refers to direct communication and automatic data exchange
between networked mechanical or electronic devices. 17, 26

monolithic architecture is a unified architectural model to make self-contained and
complex applications by composing all components in one piece. 28

127

Glossary

non-stationarity in time series means that the statistical properties of data change
over time, e.g., data points can include trends, seasonality, random walks. 21

QoS Quality of Service refers to a description or measurement of the performance of
provided service, and it is usually included in the agreement between the service
provider and user to guarantee a certain level of performance. 16, 54, 58

quantized Quantization refers to the process of approximating neural networks by
executing the operations with low bit width numbers (i.e., integer) instead of
floating point numbers. 25, 96, 103

SLO Service-level objectives represent objectives that must be achieved within a service-
level agreement (SLA) between a service provider and service users, utilizing
different performance metrics. 8, 57, 61, 70, 71

SOA Service-oriented architecture defines a type of software design for making services
that are independent, reusable and interoperable across different platforms. 74

stationarity in time series means that the statistical properties (such as mean, variance,
auto-correlation) of time series and the shape of its distribution are constant over
time. 21

UMTS The Universal Mobile Telecommunications System (UMTS) is a standard to
describe protocols for the third generation mobile cellular network technology
known as 3G. 15

128

Bibliography

[1] J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami, “Internet of things (iot): A
vision, architectural elements, and future directions,” Future generation computer
systems, vol. 29, no. 7, pp. 1645–1660, 2013.

[2] J. Pan, R. Jain, S. Paul, T. Vu, A. Saifullah, and M. Sha, “An internet of things
framework for smart energy in buildings: designs, prototype, and experiments,”
IEEE Internet of Things Journal, vol. 2, no. 6, pp. 527–537, 2015.

[3] P. Pyykönen, J. Laitinen, J. Viitanen, P. Eloranta, and T. Korhonen, “Iot for
intelligent traffic system,” in Intelligent Computer Communication and Processing
(ICCP), 2013 IEEE International Conference on. IEEE, 2013, pp. 175–179.

[4] S. Oueida, Y. Kotb, M. Aloqaily, Y. Jararweh, and T. Baker, “An edge computing
based smart healthcare framework for resource management,” Sensors, vol. 18,
no. 12, p. 4307, 2018.

[5] Y. Sun, H. Song, A. J. Jara, and R. Bie, “Internet of things and big data analytics
for smart and connected communities,” IEEE Access, vol. 4, pp. 766–773, 2016.

[6] K. A. Patil and N. R. Kale, “A model for smart agriculture using iot,” in 2016 Inter-
national Conference on Global Trends in Signal Processing, Information Computing
and Communication (ICGTSPICC), Dec 2016, pp. 543–545.

[7] Transforma Insights. In Statista, “Internet of things (iot) connected devices world-
wide in 2019 and 2030, by technology (in billions) [graph],” https://www.statista.
com/statistics/1183463/iot-connected-devices-worldwide-by-technology/, May, 19
2020, [Online; accessed 01-September-2021].

[8] B. P. Rao, P. Saluia, N. Sharma, A. Mittal, and S. V. Sharma, “Cloud computing
for internet of things & sensing based applications,” in International Conference
on Sensing Technology. IEEE, 2012, pp. 374–380.

[9] M. Villari, A. Al-Anbuky, A. Celesti, and K. Moessner, “Leveraging the internet of
things: Integration of sensors and cloud computing systems,” 2016.

[10] P. Mell, T. Grance et al., “The nist definition of cloud computing,” 2011.

129

https://www.statista.com/statistics/1183463/iot-connected-devices-worldwide-by-technology/
https://www.statista.com/statistics/1183463/iot-connected-devices-worldwide-by-technology/

Bibliography

[11] A. Botta, W. De Donato, V. Persico, and A. Pescapé, “Integration of cloud
computing and internet of things: a survey,” Future generation computer systems,
vol. 56, pp. 684–700, 2016.

[12] A. Artikis, C. Baber, P. Bizarro, C. Canudas-de Wit, O. Etzion, F. Fournier,
P. Goulart, A. Howes, J. Lygeros, G. Paliouras et al., “Scalable proactive event-
driven decision making,” IEEE Technology and Society Magazine, vol. 33, no. 3,
pp. 35–41, 2014.

[13] C. Doukas and I. Maglogiannis, “Bringing iot and cloud computing towards perva-
sive healthcare,” in 2012 Sixth International Conference on Innovative Mobile and
Internet Services in Ubiquitous Computing, 2012, pp. 922–926.

[14] L. F. Bittencourt, J. Diaz-Montes, R. Buyya, O. F. Rana, and M. Parashar,
“Mobility-aware application scheduling in fog computing,” IEEE Cloud Computing,
vol. 4, no. 2, pp. 26–35, 2017.

[15] S. Krishnan and T. Balasubramanian, “Traffic flow optimization and vehicle safety
in smart cities,” Traffic, vol. 5, no. 5, 2016.

[16] C. Keles, A. Karabiber, M. Akcin, A. Kaygusuz, B. B. Alagoz, and O. Gul, “A
smart building power management concept: Smart socket applications with dc
distribution,” International Journal of Electrical Power & Energy Systems, vol. 64,
pp. 679–688, 2015.

[17] N. Kherraf, S. Sharafeddine, C. M. Assi, and A. Ghrayeb, “Latency and reliability-
aware workload assignment in iot networks with mobile edge clouds,” IEEE Trans-
actions on Network and Service Management, vol. 16, no. 4, pp. 1435–1449, 2019.

[18] P. Schulz, M. Matthe, H. Klessig, M. Simsek, G. Fettweis, J. Ansari, S. A. Ashraf,
B. Almeroth, J. Voigt, I. Riedel et al., “Latency critical iot applications in 5g:
Perspective on the design of radio interface and network architecture,” IEEE
Communications Magazine, vol. 55, no. 2, pp. 70–78, 2017.

[19] L. F. Bittencourt, O. Rana, and I. Petri, “Cloud computing at the edges,” in
International Conference on Cloud Computing and Services Science. Springer,
2015, pp. 3–12.

[20] I. Lee and K. Lee, “The internet of things (iot): Applications, investments, and
challenges for enterprises,” Business Horizons, vol. 58, no. 4, pp. 431–440, 2015.

[21] M. Villari, M. Fazio, S. Dustdar, O. Rana, and R. Ranjan, “Osmotic computing: A
new paradigm for edge/cloud integration,” IEEE Cloud Computing, vol. 3, no. 6,
pp. 76–83, 2016.

[22] M. Aazam and E.-N. Huh, “Dynamic resource provisioning through fog micro
datacenter,” in 2015 IEEE international conference on pervasive computing and
communication workshops (PerCom workshops). IEEE, 2015, pp. 105–110.

130

Bibliography

[23] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog computing and its role in the
internet of things,” in MCC workshop on Mobile cloud computing. ACM, 2012,
pp. 13–16.

[24] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing: Vision and
challenges,” IEEE internet of things journal, vol. 3, no. 5, pp. 637–646, 2016.

[25] R. van der Meulen, “What edge computing means for infrastructure
and operations leaders,” https://www.gartner.com/smarterwithgartner/
what-edge-computing-means-for-infrastructure-and-operations-leaders/, 2018,
[Online; accessed 15-June-2021].

[26] K. Mlitz, “Market size for edge computing worldwide 2025,” https://www.
statista.com/statistics/948762/worldwide-edge-computing-market-size-forecast/
#statisticContainer, 2021, [Online; accessed 15-June-2021].

[27] E. Baccarelli, P. G. V. Naranjo, M. Scarpiniti, M. Shojafar, and J. H. Abawajy,
“Fog of everything: Energy-efficient networked computing architectures, research
challenges, and a case study,” IEEE access, vol. 5, pp. 9882–9910, 2017.

[28] Y. Liu, Q. He, D. Zheng, X. Xia, F. Chen, and B. Zhang, “Data caching optimization
in the edge computing environment,” IEEE Transactions on Services Computing,
2020.

[29] J. Byabazaire, G. O’Hare, and D. Delaney, “Data quality and trust: A perception
from shared data in iot,” in 2020 IEEE International Conference on Communica-
tions Workshops (ICC Workshops). IEEE, 2020, pp. 1–6.

[30] D. O’Keeffe, T. Salonidis, and P. Pietzuch, “Frontier: Resilient edge processing for
the internet of things,” Proceedings of the VLDB Endowment, vol. 11, no. 10, pp.
1178–1191, 2018.

[31] C. C. Aggarwal, N. Ashish, and A. Sheth, The Internet of Things: A Survey from
the Data-Centric Perspective. Boston, MA: Springer US, 2013, pp. 383–428.

[32] M. Taneja and A. Davy, “Poster abstract: Resource aware placement of data stream
analytics operators on fog infrastructure for internet of things applications,” in
2016 IEEE/ACM Symposium on Edge Computing (SEC), 2016, pp. 113–114.

[33] T. Li, Y. Liu, Y. Tian, S. Shen, and W. Mao, “A storage solution for massive iot
data based on nosql,” in 2012 IEEE International Conference on Green Computing
and Communications. IEEE, 2012, pp. 50–57.

[34] I. Psaras, O. Ascigil, S. Rene, G. Pavlou, A. Afanasyev, and L. Zhang, “Mobile
data repositories at the edge,” in {USENIX} Workshop on Hot Topics in Edge
Computing (HotEdge 18), 2018.

131

https://www.gartner.com/smarterwithgartner/what-edge-computing-means-for-infrastructure-and-operations-leaders/
https://www.gartner.com/smarterwithgartner/what-edge-computing-means-for-infrastructure-and-operations-leaders/
https://www.statista.com/statistics/948762/worldwide-edge-computing-market-size-forecast/#statisticContainer
https://www.statista.com/statistics/948762/worldwide-edge-computing-market-size-forecast/#statisticContainer
https://www.statista.com/statistics/948762/worldwide-edge-computing-market-size-forecast/#statisticContainer

Bibliography

[35] N. A. Ali and M. Abu-Elkheir, “Data management for the internet of things: Green
directions,” in 2012 IEEE Globecom Workshops. IEEE, 2012, pp. 386–390.

[36] A. Sinaeepourfard, J. Garcia, X. Masip-Bruin, E. Marín-Tordera, J. Cirera, G. Grau,
and F. Casaus, “Estimating smart city sensors data generation,” in 2016 Mediter-
ranean Ad Hoc Networking Workshop (Med-Hoc-Net). IEEE, 2016, pp. 1–8.

[37] S. Davy, J. Famaey, J. Serrat, J. L. Gorricho, A. Miron, M. Dramitinos, P. M.
Neves, S. Latré, and E. Goshen, “Challenges to support edge-as-a-service,” IEEE
Communications Magazine, vol. 52, no. 1, pp. 132–139, 2014.

[38] Z. Shang, “Low latency v2x application of mec architecture in traffic safety,” in
The 2020 International Conference on Machine Learning and Big Data Analytics
for IoT Security and Privacy, J. MacIntyre, J. Zhao, and X. Ma, Eds. Springer
International Publishing, 2021, pp. 735–739.

[39] K. Yu, L. Lin, M. Alazab, L. Tan, and B. Gu, “Deep learning-based traffic safety
solution for a mixture of autonomous and manual vehicles in a 5g-enabled intelligent
transportation system,” IEEE Transactions on Intelligent Transportation Systems,
pp. 1–11, 2020.

[40] M. Danish, J. Brazauskas, R. Bricheno, I. Lewis, and R. Mortier, “Deepdish:
Multi-object tracking with an off-the-shelf raspberry pi,” in Proceedings of the
Third ACM International Workshop on Edge Systems, Analytics and Networking,
ser. EdgeSys ’20. ACM, 2020, p. 37–42.

[41] Y. Guo, S. Wang, A. Zhou, J. Xu, J. Yuan, and C.-H. Hsu, “User allocation-
aware edge cloud placement in mobile edge computing,” Software: Practice and
Experience, 2019.

[42] C.-C. Hung, G. Ananthanarayanan, P. Bodik, L. Golubchik, M. Yu, P. Bahl, and
M. Philipose, “Videoedge: Processing camera streams using hierarchical clusters,”
in 2018 IEEE/ACM Symposium on Edge Computing (SEC). IEEE, 2018, pp.
115–131.

[43] J. Ru, Y. Yang, J. Grundy, J. Keung, and L. Hao, “An efficient deadline constrained
and data locality aware dynamic scheduling framework for multitenancy clouds,”
Concurrency and Computation: Practice and Experience, p. e6037, 2020.

[44] W. Toussaint and A. Y. Ding, “Machine learning systems in the iot: Trustworthiness
trade-offs for edge intelligence,” in 2020 IEEE Second International Conference on
Cognitive Machine Intelligence (CogMI). IEEE, 2020, pp. 177–184.

[45] E. Peltonen, M. Bennis, M. Capobianco, M. Debbah, A. Ding, F. Gil-Castiñeira,
M. Jurmu, T. Karvonen, M. Kelanti, A. Kliks et al., “6g white paper on edge
intelligence,” arXiv preprint arXiv:2004.14850, 2020.

132

Bibliography

[46] B. Varghese, E. De Lara, A. Y. Ding, C.-H. Hong, F. Bonomi, S. Dustdar, P. Harvey,
P. Hewkin, W. Shi, M. Thiele et al., “Revisiting the arguments for edge computing
research,” IEEE Internet Computing, 2021.

[47] B. Ramprasad, A. da Silva Veith, M. Gabel, and E. de Lara, “Sustainable com-
puting on the edge: A system dynamics perspective,” in Proceedings of the 22nd
International Workshop on Mobile Computing Systems and Applications, 2021, pp.
64–70.

[48] M. Liyanage, P. Porambage, A. Y. Ding, and A. Kalla, “Driving forces for multi-
access edge computing (mec) iot integration in 5g,” ICT Express, 2021.

[49] I. Lujic, V. De Maio, and I. Brandic, “Adaptive recovery of incomplete datasets
for edge analytics,” in 2018 IEEE 2nd International Conference on Fog and Edge
Computing (ICFEC). IEEE, 2018, pp. 1–10.

[50] I. Lujic, V. D. Maio, and I. Brandic, “Resilient edge data management framework,”
IEEE Transactions on Services Computing, vol. 13, no. 04, pp. 663–674, oct 2020.

[51] I. Lujic, V. De Maio, and I. Brandic, “Efficient edge storage management based on
near real-time forecasts,” in 2017 IEEE 1st International Conference on Fog and
Edge Computing (ICFEC). IEEE, 2017, pp. 21–30.

[52] I. Lujic and H.-L. Truong, “Architecturing elastic edge storage services for
data-driven decision making,” in European Conference on Software Architecture.
Springer, 2019, pp. 97–105.

[53] I. Lujic, V. D. Maio, K. Pollhammer, I. Bodrozic, J. Lasic, and I. Brandic, “In-
creasing traffic safety with real-time edge analytics and 5g,” in Proceedings of the
4th International Workshop on Edge Systems, Analytics and Networking, 2021, pp.
19–24.

[54] I. Lujic, V. De Maio, S. Venugopal, and I. Brandic, “Sea-leap: Self-adaptive
and locality-aware edge analytics placement,” IEEE Transactions on Services
Computing, no. 01, pp. 1–1, 2021.

[55] B. Dorsemaine, J.-P. Gaulier, J.-P. Wary, N. Kheir, and P. Urien, “Internet of
things: a definition & taxonomy,” in 2015 9th International Conference on Next
Generation Mobile Applications, Services and Technologies. IEEE, 2015, pp. 72–77.

[56] O. Vermesan, P. Friess et al., Internet of things-from research and innovation to
market deployment. River publishers Aalborg, 2014, vol. 29.

[57] K. K. Patel, S. M. Patel et al., “Internet of things-iot: definition, characteristics,
architecture, enabling technologies, application & future challenges,” International
journal of engineering science and computing, vol. 6, no. 5, 2016.

133

Bibliography

[58] J. Cecílio, P. Martins, and P. Furtado, “Planning for heterogeneous iot with time
guaranties,” Procedia Computer Science, vol. 109, pp. 249–256, 2017.

[59] S. Kekki, W. Featherstone, Y. Fang, P. Kuure, A. Li, A. Ranjan, D. Purkayastha,
F. Jiangping, D. Frydman, G. Verin et al., “Mec in 5g networks,” ETSI white paper,
vol. 28, pp. 1–28, 2018.

[60] K. Dolui and S. K. Datta, “Comparison of edge computing implementations: Fog
computing, cloudlet and mobile edge computing,” in 2017 Global Internet of Things
Summit (GIoTS). IEEE, 2017, pp. 1–6.

[61] M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies, “The case for vm-based
cloudlets in mobile computing,” IEEE pervasive Computing, vol. 8, no. 4, pp. 14–23,
2009.

[62] F. Giust, X. Costa-Perez, and A. Reznik, “Multi-access edge computing: An
overview of etsi mec isg,” IEEE 5G Tech Focus, vol. 1, no. 4, p. 4, 2017.

[63] IEA, “Data centres and data transmission networks,” IEA, 2020, (ac-
cessed: 2021-09-21). [Online]. Available: https://www.iea.org/reports/
data-centres-and-data-transmission-networks

[64] M. Iorga, L. Feldman, R. Barton, M. Martin, N. Goren, and C. Mahmoudi, “Fog
computing conceptual model,” 2018-03-14 2018.

[65] O. C. A. W. Group et al., “Openfog reference architecture for fog computing,”
OPFRA001, vol. 20817, p. 162, 2017.

[66] N. C. Taher, I. Mallat, N. Agoulmine, and N. El-Mawass, “An iot-cloud based
solution for real-time and batch processing of big data: Application in healthcare,”
in 2019 3rd International Conference on Bio-engineering for Smart Technologies
(BioSMART). IEEE, 2019, pp. 1–8.

[67] A. Yassine, S. Singh, M. S. Hossain, and G. Muhammad, “Iot big data analytics
for smart homes with fog and cloud computing,” Future Generation Computer
Systems, vol. 91, pp. 563–573, 2019.

[68] I. Yaqoob, L. U. Khan, S. A. Kazmi, M. Imran, N. Guizani, and C. S. Hong,
“Autonomous driving cars in smart cities: Recent advances, requirements, and
challenges,” IEEE Network, vol. 34, no. 1, pp. 174–181, 2019.

[69] A. Gandomi and M. Haider, “Beyond the hype: Big data concepts, methods, and
analytics,” International Journal of Information Management, vol. 35, no. 2, pp.
137–144, 2015.

[70] V. Gularnik and J. Srivastava, “Event detection from time series data,” in In
Proceedings of the fifth ACM SIGKDD international conference on Knowledge
discovery and data mining. ACM, 1999, pp. 33–42.

134

https://www.iea.org/reports/data-centres-and-data-transmission-networks
https://www.iea.org/reports/data-centres-and-data-transmission-networks

Bibliography

[71] T. Mastelic and I. Brandic, “Data velocity scaling via dynamic monitoring frequency
on ultrascale infrastructures,” in Cloud Computing Technology and Science (Cloud-
Com), 2015 IEEE 7th International Conference on. IEEE, 2015, pp. 422–425.

[72] D. Rivas, F. Guim, J. Polo, and D. Carrera, “Performance characterization of
video analytics workloads in heterogeneous edge infrastructures,” Concurrency and
Computation: Practice and Experience, p. e6317, 2021.

[73] G. Ananthanarayanan, P. Bahl, P. Bodík, K. Chintalapudi, M. Philipose, L. Ravin-
dranath, and S. Sinha, “Real-time video analytics: The killer app for edge comput-
ing,” computer, vol. 50, no. 10, pp. 58–67, 2017.

[74] G. Zhang, “Time series forecasting using a hybrid {ARIMA} and neural network
model,” Neurocomputing, vol. 50, pp. 159 – 175, 2003.

[75] G. E. P. Box and G. Jenkins, Time Series Analysis, Forecasting and Control.
Holden-Day, Incorporated, 1990.

[76] M. Zhang, “Time series: Autoregressive models ar, ma, arma, arima,” University
of Pittsburgh, 2018.

[77] R. J. Hyndman, E. Wang, and N. Laptev, “Large-scale unusual time series detection,”
in 2015 IEEE International Conference on Data Mining Workshop (ICDMW), Nov
2015, pp. 1616–1619.

[78] R. Hyndman and Y. Khandakar, “Automatic time series forecasting: The forecast
package for r,” Journal of Statistical Software, Articles, vol. 27, no. 3, pp. 1–22,
2008.

[79] P. McSharry, “Stream analytics for forecasting,” Foresight: The International
Journal of Applied Forecasting, no. 24, pp. 7–12, 2012.

[80] C. A. Jofipasi et al., “Selection for the best ets (error, trend, seasonal) model to
forecast weather in the aceh besar district,” in IOP conference series: materials
science and engineering, vol. 352, no. 1. IOP Publishing, 2018, p. 012055.

[81] R. L. Galvez, A. A. Bandala, E. P. Dadios, R. R. P. Vicerra, and J. M. Z. Maningo,
“Object detection using convolutional neural networks,” in TENCON 2018-2018
IEEE Region 10 Conference. IEEE, 2018, pp. 2023–2027.

[82] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár,
and C. L. Zitnick, “Microsoft coco: Common objects in context,” in European
conference on computer vision. Springer, 2014, pp. 740–755.

[83] S. Li, “Tensorflow lite: On-device machine learning framework,” Journal of Com-
puter Research and Development, vol. 57, no. 9, p. 1839, 2020.

135

Bibliography

[84] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M. An-
dreetto, and H. Adam, “Mobilenets: Efficient convolutional neural networks for
mobile vision applications,” arXiv preprint arXiv:1704.04861, 2017.

[85] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen, “Mobilenetv2:
Inverted residuals and linear bottlenecks,” in Proceedings of the IEEE conference
on computer vision and pattern recognition, 2018, pp. 4510–4520.

[86] I. A. Khan, M. Safdar, F. Ullah, S. R. Jan, F. Khan, and S. Shah, “Request-
response interaction model in constrained networks,” International Journal of
Advance Research and Innovative Ideas in Education, Online ISSN-2395, vol. 4396,
2016.

[87] V. Karagiannis, P. Chatzimisios, F. Vazquez-Gallego, and J. Alonso-Zarate, “A
survey on application layer protocols for the internet of things,” Transaction on
IoT and Cloud computing, vol. 3, no. 1, pp. 11–17, 2015.

[88] O. Blazy, E. Conchon, M. Klingler, and D. Sauveron, “An iot attribute-based
security framework for topic-based publish/subscribe systems,” IEEE Access, vol. 9,
pp. 19 066–19 077, 2021.

[89] I. M. Wirawan, I. D. Wahyono, G. Idfi, and G. R. Kusumo, “Iot communication
system using publish-subscribe,” in 2018 International Seminar on Application for
Technology of Information and Communication. IEEE, 2018, pp. 61–65.

[90] B. Mishra and A. Kertesz, “The use of mqtt in m2m and iot systems: A survey,”
IEEE Access, vol. 8, pp. 201 071–201 086, 2020.

[91] A. Trapletti and K. Hornik, tseries: Time Series Analysis and Computational
Finance, 2020, r package version 0.10-48. [Online]. Available: https:
//CRAN.R-project.org/package=tseries

[92] A. Zeileis and G. Grothendieck, “zoo: S3 infrastructure for regular and irregular
time series,” Journal of Statistical Software, vol. 14, no. 6, pp. 1–27, 2005.

[93] H. Wickham, ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New
York, 2016. [Online]. Available: https://ggplot2.tidyverse.org

[94] S. Ali, M. A. Jarwar, and I. Chong, “Design methodology of microservices to
support predictive analytics for iot applications,” Sensors, vol. 18, no. 12, p. 4226,
2018.

[95] D. Evans, “The internet of things: How the next evolution of the internet is
changing everything,” CISCO white paper, 2011.

[96] F. Tao, Q. Qi, A. Liu, and A. Kusiak, “Data-driven smart manufacturing,” Journal
of Manufacturing Systems, vol. 48, pp. 157–169, 2018.

136

https://CRAN.R-project.org/package=tseries
https://CRAN.R-project.org/package=tseries
https://ggplot2.tidyverse.org

Bibliography

[97] C. Perera, A. Zaslavsky, P. Christen, and D. Georgakopoulos, “Sensing as a service
model for smart cities supported by internet of things,” Transactions on Emerging
Telecommunications Technologies, vol. 25, no. 1, pp. 81–93, 2014.

[98] J. Jin, J. Gubbi, S. Marusic, and M. Palaniswami, “An information framework for
creating a smart city through internet of things,” IEEE Internet of Things Journal,
vol. 1, no. 2, pp. 112–121, 2014.

[99] A. Mikulec and V. Mikuličić, “Influence of renewable energy sources on distribution
network availability,” International journal of electrical and computer engineering
systems, vol. 2, no. 1, pp. 37–48, 2011.

[100] M. Al-Khafajiy, T. Baker, A. Waraich, D. Al-Jumeily, and A. Hussain, “Iot-fog
optimal workload via fog offloading,” in International Conference on Utility and
Cloud Computing Companion. IEEE, 2018, pp. 359–364.

[101] N. Abbas, M. Asim, N. Tariq, T. Baker, and S. Abbas, “A mechanism for securing
iot-enabled applications at the fog layer,” Journal of Sensor and Actuator Networks,
vol. 8, no. 1, p. 16, 2019.

[102] S. Liu and P. C. Molenaar, “ivar: A program for imputing missing data in multi-
variate time series using vector autoregressive models,” Behavior research methods,
vol. 46, no. 4, pp. 1138–1148, 2014.

[103] K. Wellenzohn, M. H. Böhlen, A. Dignös, J. Gamper, and H. Mitterer, “Continuous
imputation of missing values in streams of pattern-determining time series.” in
EDBT, 2017, pp. 330–341.

[104] M. Yuriyama, T. Kushida, and M. Itakura, “A new model of accelerating service
innovation with sensor-cloud infrastructure,” in Annual SRII Global Conference.
IEEE, 2011, pp. 308–314.

[105] A. Papageorgiou, B. Cheng, and E. Kovacs, “Real-time data reduction at the
network edge of internet-of-things systems,” in 2015 11th International Conference
on Network and Service Management (CNSM), Nov 2015, pp. 284–291.

[106] A. Ukil, S. Bandyopadhyay, and A. Pal, “Iot data compression: Sensor-agnostic
approach,” in 2015 Data Compression Conference, April 2015, pp. 303–312.

[107] F. Van den Abeele, J. Hoebeke, I. Moerman, and P. Demeester, “Integration of
heterogeneous devices and communication models via the cloud in the constrained
internet of things,” International Journal of Distributed Sensor Networks, vol. 11,
no. 10, pp. 1–16, 2015.

[108] M. S. Mahdavinejad, M. Rezvan, M. Barekatain, P. Adibi, P. Barnaghi, and A. P.
Sheth, “Machine learning for internet of things data analysis: a survey,” Digital
Communications and Networks, vol. 4, no. 3, pp. 161 – 175, 2018.

137

Bibliography

[109] F. Bonomi, R. Milito, P. Natarajan, and J. Zhu, Fog Computing: A Platform for
Internet of Things and Analytics. Springer International Publishing, 2014, pp.
169–186.

[110] O. Skarlat, M. Nardelli, S. Schulte, M. Borkowski, and P. Leitner, “Optimized
iot service placement in the fog,” Service Oriented Computing and Applications,
vol. 11, no. 4, pp. 427–443, Dec 2017.

[111] N. R. Herbst, N. Huber, S. Kounev, and E. Amrehn, “Self-adaptive workload
classification and forecasting for proactive resource provisioning,” in Proceedings of
the 4th ACM/SPEC International Conference on Performance Engineering, ser.
ICPE ’13. ACM, 2013, pp. 187–198.

[112] L. Tang, L. Yu, F. Liu, and W. Xu, “An integrated data characteristic testing scheme
for complex time series data exploration,” International Journal of Information
Technology & Decision Making, vol. 12, no. 03, pp. 491–521, 2013.

[113] A. M. De Livera, R. J. Hyndman, and R. D. Snyder, “Forecasting time series with
complex seasonal patterns using exponential smoothing,” Journal of the American
Statistical Association, vol. 106, no. 496, pp. 1513–1527, 2011.

[114] “Ericsson mobility report, june 2016,” http://www.ericsson.com/res/docs/2016/
ericsson-mobility-report-2016.pdf, 2016, [Online; accessed 30-August-2021].

[115] J. Lin, S. Williamson, K. Borne, and D. De Barr, Pattern Recognition in Time
Series, Advances in Machine Learning and Data Mining for Astronomy. Chapman
and Hall, 2012.

[116] X. Wang, K. Smith-Miles, and R. Hyndman, “Rule induction for forecasting
method selection: Meta-learning the characteristics of univariate time series,”
Neurocomputing, vol. 72, no. 10-12, pp. 2581–2594, 2009.

[117] T. W. Liao, “Clustering of time series data—a survey,” Pattern recognition, pp.
1857–1874, 2005.

[118] X. Wang, K. Smith, and R. Hyndman, “Characteristic-based clustering for time
series data,” Data mining and knowledge Discovery, vol. 13, no. 3, pp. 335–364,
2006.

[119] A. Aral and I. Brandic, “Consistency of the fittest: Towards dynamic staleness
control for edge data analytics,” in European Conference on Parallel Processing.
Springer, 2018, pp. 40–52.

[120] D. Minoli, K. Sohraby, and B. Occhiogrosso, “Iot considerations, requirements,
and architectures for smart buildings—energy optimization and next-generation
building management systems,” IEEE Internet of Things Journal, vol. 4, no. 1, pp.
269–283, 2017.

138

http://www.ericsson.com/res/docs/2016/ericsson-mobility-report-2016.pdf
http://www.ericsson.com/res/docs/2016/ericsson-mobility-report-2016.pdf

Bibliography

[121] M. Jaradat, M. Jarrah, A. Bousselham, Y. Jararweh, and M. Al-Ayyoub, “The
internet of energy: smart sensor networks and big data management for smart
grid,” Procedia Computer Science, vol. 56, pp. 592–597, 2015.

[122] D. Georgakopoulos, P. P. Jayaraman, M. Fazia, M. Villari, and R. Ranjan, “Internet
of things and edge cloud computing roadmap for manufacturing,” IEEE Cloud
Computing, vol. 3, no. 4, pp. 66–73, 2016.

[123] W. He, G. Yan, and L. Da Xu, “Developing vehicular data cloud services in the
iot environment,” IEEE Transactions on Industrial Informatics, vol. 10, no. 2, pp.
1587–1595, 2014.

[124] M. Satyanarayanan, P. Simoens, Y. Xiao, P. Pillai, Z. Chen, K. Ha, W. Hu, and
B. Amos, “Edge analytics in the internet of things,” IEEE Pervasive Computing,
vol. 14, no. 2, pp. 24–31, 2015.

[125] A. Zaslavsky, C. Perera, and D. Georgakopoulos, “Sensing as a service and big
data,” arXiv preprint arXiv:1301.0159, 2013.

[126] D. V. Dimitrov, “Medical internet of things and big data in healthcare,” Healthcare
informatics research, vol. 22, no. 3, pp. 156–163, 2016.

[127] P. O’Donovan, K. Leahy, K. Bruton, and D. T. O’Sullivan, “An industrial big data
pipeline for data-driven analytics maintenance applications in large-scale smart
manufacturing facilities,” Journal of Big Data, vol. 2, no. 1, p. 25, 2015.

[128] R. Lederman and L. Wynter, “Real-time traffic estimation using data expansion,”
Transportation Research Part B: Methodological, vol. 45, no. 7, pp. 1062–1079, 2011.

[129] L. L. Lai, H. Braun, Q. P. Zhang, Q. Wu, Y. N. Ma, W. C. Sun, and L. Yang,
“Intelligent weather forecast,” in Proceedings of 2004 International Conference on
Machine Learning and Cybernetics, vol. 7, Aug 2004, pp. 4216–4221 vol.7.

[130] B. Cheng, G. Solmaz, F. Cirillo, E. Kovacs, K. Terasawa, and A. Kitazawa, “Fogflow:
Easy programming of iot services over cloud and edges for smart cities,” IEEE
Internet of Things Journal, vol. 5, no. 2, pp. 696–707, 2018.

[131] H.-L. Truong, A. Murguzur, and E. Yang, “Challenges in enabling quality of
analytics in the cloud,” Journal of Data and Information Quality (JDIQ), vol. 9,
no. 2, pp. 1–4, 2018.

[132] H.-L. Truong and M. Halper, “Characterizing incidents in cloud-based iot data ana-
lytics,” in 2018 IEEE 42nd Annual Computer Software and Applications Conference
(COMPSAC). IEEE, 2018, pp. 442–447.

[133] J. Lin, E. Keogh, L. Wei, and S. Lonardi, “Experiencing sax: a novel symbolic
representation of time series,” Data Mining and knowledge discovery, vol. 15, no. 2,
pp. 107–144, 2007.

139

Bibliography

[134] R. Li, T. Song, B. Mei, H. Li, X. Cheng, and L. Sun, “Blockchain for large-scale
internet of things data storage and protection,” IEEE Transactions on Services
Computing, pp. 1–1, 2018.

[135] A. Reyna, C. Martín, J. Chen, E. Soler, and M. Díaz, “On blockchain and its
integration with iot. challenges and opportunities,” Future generation computer
systems, vol. 88, pp. 173–190, 2018.

[136] P. Balamuralidhara, P. Misra, and A. Pal, “Software platforms for internet of things
and m2m,” Journal of the Indian Institute of Science, vol. 93, no. 3, pp. 487–498,
2013.

[137] B. Confais, A. Lebre, and B. Parrein, “Performance analysis of object store systems
in a fog and edge computing infrastructure,” in Transactions on Large-Scale Data-
and Knowledge-Centered Systems XXXIII. Springer, 2017, pp. 40–79.

[138] G. Blair, N. Bencomo, and R. B. France, “Models@ run. time,” Computer, vol. 42,
no. 10, pp. 22–27, 2009.

[139] M. Su, L. Zhang, Y. Wu, K. Chen, and K. Li, “Systematic data placement opti-
mization in multi-cloud storage for complex requirements,” IEEE Transactions on
Computers, vol. 65, no. 6, pp. 1964–1977, 2016.

[140] A. Taivalsaari and T. Mikkonen, “A roadmap to the programmable world: software
challenges in the iot era,” IEEE Software, vol. 34, no. 1, pp. 72–80, 2017.

[141] D. Talia, “Clouds for scalable big data analytics,” Computer, vol. 46, no. 5, pp.
98–101, 2013.

[142] J. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwinski, P. Eaton, D. Geels, R. Gummadi,
S. Rhea, H. Weatherspoon, W. Weimer et al., “Oceanstore: An architecture for
global-scale persistent storage,” in ACM SIGARCH Computer Architecture News,
vol. 28. ACM, 2000, pp. 190–201.

[143] K. Goniewicz, M. Goniewicz, W. Pawłowski, and P. Fiedor, “Road accident rates:
strategies and programmes for improving road traffic safety,” European journal of
trauma and emergency surgery, vol. 42, no. 4, pp. 433–438, 2016.

[144] D. Adminaité-Fodor and G. Jost, How safe is walking and cycling in Europe? PIN
Flash Report 38., European Transport Safety Council (ETSC), 2020.

[145] X. Yan, Y. Zhang, and L. Ma, “The influence of in-vehicle speech warning timing on
drivers’ collision avoidance performance at signalized intersections,” Transportation
research part C: emerging technologies, vol. 51, pp. 231–242, 2015.

[146] M. Green, “" how long does it take to stop?" methodological analysis of driver
perception-brake times,” Transportation human factors, vol. 2, no. 3, pp. 195–216,
2000.

140

Bibliography

[147] W. K. Alhajyaseen and M. Iryo-Asano, “Studying critical pedestrian behavioral
changes for the safety assessment at signalized crosswalks,” Safety science, vol. 91,
pp. 351–360, 2017.

[148] J. Chen and X. Ran, “Deep learning with edge computing: A review.” Proceedings
of the IEEE, vol. 107, no. 8, pp. 1655–1674, 2019.

[149] SWARCO, “Signals for the future. led traffic lights from the global
market leader.” SWARCO, 2018, (accessed: 2021-07-16). [Online]. Avail-
able: https://www.swarco.com/sites/default/files/public/downloads/2019-02/
SWARCO_folder_signalgeber_EN_screen.pdf

[150] Q. Zhang, H. Sun, X. Wu, and H. Zhong, “Edge video analytics for public safety:
A review,” Proceedings of the IEEE, vol. 107, no. 8, pp. 1675–1696, 2019.

[151] P. Patel, M. I. Ali, and A. Sheth, “On using the intelligent edge for iot analytics,”
IEEE Intelligent Systems, vol. 32, no. 5, pp. 64–69, 2017.

[152] Z. Ning, J. Huang, and X. Wang, “Vehicular fog computing: Enabling real-time
traffic management for smart cities,” IEEE Wireless Communications, vol. 26,
no. 1, pp. 87–93, 2019.

[153] E. Ahmed, I. Yaqoob, I. A. T. Hashem, I. Khan, A. I. A. Ahmed, M. Imran, and
A. V. Vasilakos, “The role of big data analytics in internet of things,” Computer
Networks, vol. 129, pp. 459–471, 2017.

[154] J. Ren, Y. Pan, A. Goscinski, and R. A. Beyah, “Edge computing for the internet
of things,” IEEE Network, vol. 32, no. 1, pp. 6–7, 2018.

[155] A. Aral and I. Brandic, “Learning spatiotemporal failure dependencies for resilient
edge computing services,” IEEE Transactions on Parallel and Distributed Systems,
pp. 1–1, 2020.

[156] C. Wang, C. Gill, and C. Lu, “Adaptive data replication in real-time reliable
edge computing for internet of things,” in 2020 IEEE/ACM Fifth International
Conference on Internet-of-Things Design and Implementation (IoTDI). IEEE,
2020, pp. 128–134.

[157] Q. Fan and N. Ansari, “Towards workload balancing in fog computing empowered
iot,” IEEE Transactions on Network Science and Engineering, 2018.

[158] B. Luo, S. Tan, Z. Yu, and W. Shi, “Edgebox: Live edge video analytics for near
real-time event detection,” in 2018 IEEE/ACM Symposium on Edge Computing
(SEC), IEEE. IEEE, 2018, pp. 347–348.

[159] P. Liu, B. Qi, and S. Banerjee, “Edgeeye: An edge service framework for real-time
intelligent video analytics,” in Proceedings of the 1st international workshop on
edge systems, analytics and networking. ACM, 2018, pp. 1–6.

141

https://www.swarco.com/sites/default/files/public/downloads/2019-02/SWARCO_folder_signalgeber_EN_screen.pdf
https://www.swarco.com/sites/default/files/public/downloads/2019-02/SWARCO_folder_signalgeber_EN_screen.pdf

Bibliography

[160] A. da Silva Veith, M. D. de Assuncao, and L. Lefevre, “Latency-aware placement
of data stream analytics on edge computing,” in International Conference on
Service-Oriented Computing. Springer, 2018, pp. 215–229.

[161] H. Gupta, Z. Xu, and U. Ramachandran, “Datafog: Towards a holistic data
management platform for the iot age at the network edge,” in {USENIX} Workshop
on Hot Topics in Edge Computing (HotEdge 18), 2018.

[162] Q. Zhang, Q. Zhang, W. Shi, and H. Zhong, “Firework: Data processing and sharing
for hybrid cloud-edge analytics,” IEEE Transactions on Parallel and Distributed
Systems, vol. 29, no. 9, pp. 2004–2017, 2018.

[163] S. Venugopal, M. Gazzetti, Y. Gkoufas, and K. Katrinis, “Shadow puppets: Cloud-
level accurate {AI} inference at the speed and economy of edge,” in {USENIX}
Workshop on Hot Topics in Edge Computing (HotEdge 18), 2018.

[164] B. Cheng, A. Papageorgiou, and M. Bauer, “Geelytics: Enabling on-demand edge
analytics over scoped data sources,” in 2016 IEEE International Congress on Big
Data (BigData Congress), 2016, pp. 101–108.

[165] J. Santos, T. Wauters, B. Volckaert, and F. De Turck, “Towards network-aware
resource provisioning in kubernetes for fog computing applications,” in 2019 IEEE
Conference on Network Softwarization (NetSoft). IEEE, 2019, pp. 351–359.

[166] P.-H. Tsai, H.-J. Hong, A.-C. Cheng, and C.-H. Hsu, “Distributed analytics in fog
computing platforms using tensorflow and kubernetes,” in 2017 19th Asia-Pacific
Network Operations and Management Symposium (APNOMS). IEEE, 2017, pp.
145–150.

[167] M. Breitbach, D. Schäfer, J. Edinger, and C. Becker, “Context-aware data and
task placement in edge computing environments,” in 2019 IEEE International
Conference on Pervasive Computing and Communications (PerCom. IEEE, 2019,
pp. 1–10.

[168] C. Li, J. Tang, H. Tang, and Y. Luo, “Collaborative cache allocation and task
scheduling for data-intensive applications in edge computing environment,” Future
Generation Computer Systems, vol. 95, pp. 249–264, 2019.

[169] H. B. Pasandi and T. Nadeem, “Convince: Collaborative cross-camera video analyt-
ics at the edge,” in 2020 IEEE International Conference on Pervasive Computing
and Communications Workshops (PerCom Workshops). IEEE, 2020, pp. 1–5.

[170] T. Rausch, S. Nastic, and S. Dustdar, “Emma: Distributed qos-aware mqtt middle-
ware for edge computing applications,” in 2018 IEEE International Conference on
Cloud Engineering (IC2E). IEEE, 2018, pp. 191–197.

142

Bibliography

[171] V. De Maio and I. Brandic, “Multi-objective mobile edge provisioning in small
cell clouds,” in Proceedings of the 2019 ACM/SPEC International Conference on
Performance Engineering, 2019, pp. 127–138.

[172] S. Barker, A. Mishra, D. Irwin, E. Cecchet, P. Shenoy, and J. Albrecht, “Smart*:
An open data set and tools for enabling research in sustainable homes,” SustKDD,
August, vol. 111, p. 112, 2012.

[173] “Umass trace repository,” http://traces.cs.umass.edu/, 2017, [Online; accessed
04-August-2021].

[174] T. Bednar, A. David, H. Schöberl, and G. Kratochwil, “University plus-energy
office high-rise building innovations for buildings in practice,” 12 2016.

[175] R. J. Hyndman and A. B. Koehler, “Another look at measures of forecast accuracy,”
International Journal of Forecasting, pp. 679–688, 2006.

[176] R. J. Hyndman, forecast: Forecasting functions for time series and
linear models, 2017, r package version 8.2. [Online]. Available: http:
//pkg.robjhyndman.com/forecast

[177] J. Hasenburg and D. Bermbach, “Geobroker: A pub/sub broker considering geo-
context information,” Software Impacts, vol. 6, p. 100029, 2020.

[178] R. A. Light, “Mosquitto: server and client implementation of the mqtt protocol,”
Journal of Open Source Software, vol. 2, no. 13, p. 265, 2017.

[179] L. Wang, J. Shi, G. Song, and I.-F. Shen, “Object detection combining recognition
and segmentation,” in Asian conference on computer vision. Springer, 2007, pp.
189–199.

[180] J.-P. Jodoin, G.-A. Bilodeau, and N. Saunier, “Urban tracker: Multiple object
tracking in urban mixed traffic,” in IEEE Winter Conference on Applications of
Computer Vision. IEEE, 2014, pp. 885–892.

[181] V. De Maio and I. Brandic, “First hop mobile offloading of dag computations,”
in 2018 18th IEEE/ACM International Symposium on Cluster, Cloud and Grid
Computing (CCGRID). IEEE, 2018, pp. 83–92.

[182] G. Lewis and P. Lago, “A catalog of architectural tactics for cyber-foraging,” in 2015
11th International ACM SIGSOFT Conference on Quality of Software Architectures
(QoSA). IEEE, 2015, pp. 53–62.

[183] A. Mehta, W. Tärneberg, C. Klein, J. Tordsson, M. Kihl, and E. Elmroth, “How
beneficial are intermediate layer data centers in mobile edge networks?” in 2016
IEEE 1st International Workshops on Foundations and Applications of Self* Systems
(FAS* W). IEEE, 2016, pp. 222–229.

143

http://pkg.robjhyndman.com/forecast
http://pkg.robjhyndman.com/forecast

Bibliography

[184] R. J. Hyndman, Y. Khandakar et al., Automatic time series for forecasting: the
forecast package for R. Monash University, Department of Econometrics and
Business Statistics, 2007, no. 6/07.

[185] H. Ding, G. Trajcevski, P. Scheuermann, X. Wang, and E. Keogh, “Querying
and mining of time series data: Experimental comparison of representations and
distance measures,” Proc. VLDB Endow., vol. 1, no. 2, pp. 1542–1552, Aug. 2008.

[186] K. Wellenzohn, M. H. Böhlen, A. Dignös, J. Gamper, and H. Mitterer, “Continuous
imputation of missing values in streams of pattern-determining time series,” in
Proceedings of the 20th International Conference on Extending Database Technology
(EDBT), 2017, pp. 330–341.

[187] S. Liu and P. C. Molenaar, “ivar: A program for imputing missing data in multi-
variate time series using vector autoregressive models,” Behavior research methods,
vol. 46, no. 4, pp. 1138–1148, 2014.

[188] J. Honaker and G. King, “What to do about missing values in time-series cross-
section data,” American Journal of Political Science, vol. 54, no. 2, pp. 561–581,
2010.

[189] J. Duan, W. Wang, J. Zeng, D. Zhang, and B. Shi, “A prediction algorithm for
time series based on adaptive model selection,” Expert Systems with Applications,
vol. 36, no. 2, pp. 1308–1314, 2009.

[190] W. Junger and A. P. de Leon, “Imputation of missing data in time series for air
pollutants,” Atmospheric Environment, vol. 102, pp. 96–104, 2015.

[191] F. Cismondi, A. S. Fialho, S. M. Vieira, J. M. C. Sousa, S. R. Reti, M. D. Howell, and
S. N. Finkelstein, “Computational intelligence methods for processing misaligned,
unevenly sampled time series containing missing data,” in 2011 IEEE Symposium
on Computational Intelligence and Data Mining (CIDM), April 2011, pp. 224–231.

[192] J. P. Musial, M. M. Verstraete, and N. Gobron, “Comparing the effectiveness of
recent algorithms to fill and smooth incomplete and noisy time series,” Atmospheric
chemistry and physics, vol. 11, no. 15, pp. 7905–7923, 2011.

[193] K. Hocke and N. Kämpfer, “Gap filling and noise reduction of unevenly sampled
data by means of the lomb-scargle periodogram,” Atmospheric Chemistry and
Physics, vol. 9, no. 12, pp. 4197–4206, 2009.

[194] M. Abu-Elkheir, M. Hayajneh, and N. A. Ali, “Data management for the internet of
things: Design primitives and solution,” Sensors, vol. 13, pp. 15 582–15 612, 2013.

[195] Q. Yan and Y. Y. Wang, “A kind of efficient data archiving method for historical
sensor data,” in ICISCE ’16, July 2016, pp. 44–48.

144

Bibliography

[196] G. A. Lewis and P. Lago, “A catalog of architectural tactics for cyber-foraging,” in
Proceedings of the 11th International ACM SIGSOFT Conference on Quality of
Software Architectures, ser. QoSA ’15. ACM, 2015, pp. 53–62.

[197] J. Flinn, S. Sinnamohideen, N. Tolia, and M. Satyanarayanan, “Data staging on
untrusted surrogates.” in FAST, vol. 3, 2003, pp. 15–28.

[198] J. a. Gama, R. Sebastião, and P. P. Rodrigues, “Issues in evaluation of stream
learning algorithms,” in Proceedings of the 15th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, ser. KDD ’09. ACM, 2009,
pp. 329–338.

[199] J. Read, A. Bifet, G. Holmes, and B. Pfahringer, “Streaming multi-label classifica-
tion.” in WAPA, 2011, pp. 19–25.

[200] R. Montella, M. Ruggieri, and S. Kosta, “A fast, secure, reliable, and resilient data
transfer framework for pervasive iot applications,” in Conference on Computer
Communications Workshops. IEEE, 2018, pp. 710–715.

[201] T. Baker, M. Asim, Á. MacDermott, F. Iqbal, F. Kamoun, B. Shah, O. Alfandi,
and M. Hammoudeh, “A secure fog-based platform for scada-based iot critical
infrastructure,” Software: Practice and Experience, 2019.

[202] Z. Maamar, T. Baker, M. Sellami, M. Asim, E. Ugljanin, and N. Faci, “Cloud
vs edge: Who serves the internet-of-things better?” Internet Technology Letters,
vol. 1, no. 5, p. e66, 2018.

[203] H. d. S. Araújo, J. J. Rodrigues, R. d. A. Rabelo, N. d. C. Sousa, J. V. Sobral
et al., “A proposal for iot dynamic routes selection based on contextual information,”
Sensors, vol. 18, no. 2, p. 353, 2018.

[204] M. Hassanalieragh, A. Page, T. Soyata, G. Sharma, M. Aktas, G. Mateos,
B. Kantarci, and S. Andreescu, “Health monitoring and management using internet-
of-things (iot) sensing with cloud-based processing: Opportunities and challenges,”
in 2015 IEEE International Conference on Services Computing, 2015, pp. 285–292.

[205] T. Lorido-Botran, J. Miguel-Alonso, and J. A. Lozano, “A review of auto-scaling
techniques for elastic applications in cloud environments,” Journal of grid computing,
vol. 12, no. 4, pp. 559–592, 2014.

[206] P. Jamshidi, A. Sharifloo, C. Pahl, H. Arabnejad, A. Metzger, and G. Estrada,
“Fuzzy self-learning controllers for elasticity management in dynamic cloud archi-
tectures,” in Quality of Software Architectures (QoSA), 2016 12th International
ACM SIGSOFT Conference on. IEEE, 2016, pp. 70–79.

[207] B. Vogel and D. Gkouskos, “An open architecture approach: Towards common
design principles for an iot architecture,” in Proceedings of the 11th European

145

Bibliography

Conference on Software Architecture: Companion Proceedings, ser. ECSA ’17.
ACM, 2017, pp. 85–88.

[208] D. Weyns, M. U. Iftikhar, D. Hughes, and N. Matthys, “Applying architecture-
based adaptation to automate the management of internet-of-things,” in Software
Architecture - 12th European Conference on Software Architecture, ECSA 2018,
Madrid, Spain, Proceedings, 2018, pp. 49–67.

[209] M. D’Angelo, “Decentralized self-adaptive computing at the edge,” in Proceedings
of the 13th International Conference on Software Engineering for Adaptive and
Self-Managing Systems, ser. SEAMS ’18. ACM, 2018, pp. 144–148.

[210] Z. Wen, P. Bhatotia, R. Chen, M. Lee et al., “Approxiot: Approximate analytics
for edge computing,” in 2018 IEEE 38th International Conference on Distributed
Computing Systems (ICDCS). IEEE, 2018, pp. 411–421.

[211] M. Anandhalli and V. P. Baligar, “A novel approach in real-time vehicle detection
and tracking using raspberry pi,” Alexandria engineering journal, vol. 57, no. 3, pp.
1597–1607, 2018.

[212] B. Guidi and L. Ricci, “Aggregation techniques for the internet of things: An
overview,” in The Internet of Things for Smart Urban Ecosystems. Springer, 2019,
pp. 151–176.

[213] V. Moysiadis, P. Sarigiannidis, and I. Moscholios, “Towards distributed data
management in fog computing,” Wireless Communications and Mobile Computing,
vol. 2018, 2018.

[214] B. Diène, J. J. Rodrigues, O. Diallo, E. H. M. Ndoye, and V. V. Korotaev, “Data
management techniques for internet of things,” Mechanical Systems and Signal
Processing, vol. 138, p. 106564, 2020.

[215] S. Yi, Z. Hao, Q. Zhang, Q. Zhang, W. Shi, and Q. Li, “Lavea: Latency-aware
video analytics on edge computing platform,” in 2017 IEEE 37th International
Conference on Distributed Computing Systems (ICDCS), 2017, pp. 2573–2574.

[216] U. Drolia, K. Guo, J. Tan, R. Gandhi, and P. Narasimhan, “Cachier: Edge-
caching for recognition applications,” in 2017 IEEE 37th international conference
on distributed computing systems (ICDCS). IEEE, 2017, pp. 276–286.

[217] B. Ali, M. A. Pasha, S. ul Islam, H. Song, and R. Buyya, “A volunteer-supported
fog computing environment for delay-sensitive iot applications,” IEEE Internet of
Things Journal, vol. 8, no. 5, pp. 3822–3830, 2020.

[218] M. Selimi, L. Cerdà-Alabern, M. Sánchez-Artigas, F. Freitag, and L. Veiga, “Prac-
tical service placement approach for microservices architecture,” in 2017 17th
IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing
(CCGRID). IEEE, 2017, pp. 401–410.

146

Bibliography

[219] T. Hamrouni, S. Slimani, and F. B. Charrada, “A survey of dynamic replication
and replica selection strategies based on data mining techniques in data grids,”
Engineering Applications of Artificial Intelligence, vol. 48, pp. 140–158, 2016.

[220] P. Kathiravelu, P. Van Roy, and L. Veiga, “Composing network service chains at
the edge: A resilient and adaptive software-defined approach,” Transactions on
Emerging Telecommunications Technologies, vol. 29, no. 11, p. e3489, 2018.

[221] Q. Zhang, M. Lin, L. T. Yang, Z. Chen, S. U. Khan, and P. Li, “A double deep q-
learning model for energy-efficient edge scheduling,” IEEE Transactions on Services
Computing, vol. 12, no. 5, pp. 739–749, 2018.

[222] Q. Luo, C. Li, T. Luan, and W. Shi, “Minimizing the delay and cost of computation
offloading for vehicular edge computing,” IEEE Transactions on Services Computing,
2021.

[223] D. Wang, Y. Peng, X. Ma, W. Ding, H. Jiang, F. Chen, and J. Liu, “Adaptive
wireless video streaming based on edge computing: Opportunities and approaches,”
IEEE Transactions on services Computing, vol. 12, no. 5, pp. 685–697, 2018.

[224] Z. Tang, X. Zhou, F. Zhang, W. Jia, and W. Zhao, “Migration modeling and
learning algorithms for containers in fog computing,” IEEE Transactions on Services
Computing, vol. 12, no. 5, pp. 712–725, 2018.

[225] M. Malensek, S. L. Pallickara, and S. Pallickara, “Hermes: Federating fog and
cloud domains to support query evaluations in continuous sensing environments,”
IEEE Cloud Computing, vol. 4, no. 2, pp. 54–62, 2017.

[226] P. B. Weerakody, K. W. Wong, G. Wang, and W. Ela, “A review of irregular time
series data handling with gated recurrent neural networks,” Neurocomputing, 2021.

147

APPENDIX A
Curriculum Vitæ

Ivan Lujić
Personal Information

Date of birth November 26th, 1992
Place of birth Livno, Bosnia and Herzegovina
Citizenship Croatian
E-mail ivan.lujic@tuwien.ac.at || ivan.lujic@gmail.com
Web https://www.ec.tuwien.ac.at/ivan.lujic
Affiliation Vienna University of Technology

Institute of Information Systems Engineering
Research Unit E-Commerce
Favoritenstrasse 9-11/194, A-1040 Vienna, Austria

Education

2017 - present Doctoral Degree in Computer Science at Vienna Univer-
sity of Technology, Vienna, Austria

2014 - 2016 Master’s Degree in Computer Science at University of
Split, Split, Croatia

2011 - 2014 Bachelor’s Degree in Computer Science at University of
Split, Split, Croatia

2007 - 2011 Economic Technician at Vocational school, Livno, Bosnia
and Herzegovina

149

A. Curriculum Vitæ

Professional Experience

2016 – present Project Assistant at TU Wien
2020 – 2021 Teaching Assistant at TU Wien (Course: Energy-efficient

Distributed Systems)
07/2019 – 09/2019 Research Intern at IBM Research Ireland, Dublin, Ireland
09/2015 – 10/2015 Student Intern at Ericsson Nikola Tesla, Split, Croatia

Honors, Awards and Scholarships

• netidee scholarship financed by the Internet Foundation Austria (IPA), for sup-
porting PhD theses that promote research on Internet-related topics (10k Euro,
12/2018 - 05/2020)

• Short Term Scientific Mission (STSM) grant within the COST project IC1305:
NESUS (Network for Sustainable Ultrascale Computing) (2018)

• Erasmus+ grant for student exchange at the Vienna University of Technology,
Vienna, Austria (03/2016 - 07/2016)

• Two times student scholarship by the State Office for Croats Abroad, a government
office of the Republic of Croatia (2014, 2015)

Certifications

• IBM Cloud: Deploying Microservices with Kubernetes (Coursera, 2019)
Credential: https://www.coursera.org/account/accomplishments/verify/
N68MT92A942C

• In-Memory Data Management (openHPI - Hasso Plattner Institute, 2015)
Credential: https://open.hpi.de/verify/xohah-sipof-mylog-mehob-gesit

• SAP S/4HANA – Deep Dive (openSAP, 2015)
Credential: https://open.sap.com/verify/xevoz-tehav-cahef-habuh-duzem

• Leadership in Digital Transformation (openSAP, 2015)
Credential: https://open.sap.com/verify/xusev-lobir-lilis-nyhed-tubuz

• Sustainability and Business Innovation (openSAP, 2015)
Credential: https://open.sap.com/verify/xucan-zilah-malos-mezov-zapet

150

Scientific Activities

Research Projects

• InTraSafEd 5G - Increasing Traffic Safety with Edge and 5G, financed by the City
of Vienna, 2020 (2020) http://intrasafed.ec.tuwien.ac.at/

• RUCON - Runtime Control in Multi Clouds, FWF Y 904 START Programm, 2015
(2016 - present) http://rucon.ec.tuwien.ac.at/

Scientific Talks

• "Increasing Traffic Safety with Real-Time Edge Analytics and 5G", ACM 4th
International Workshop on Edge Systems, Analytics and Networking (EdgeSys
2021), April 26, 2021, [Online]

• "Architecturing Elastic Edge Storage Services for Data-Driven Decision Making",
13th European Conference on Software Architecture (ECSA 2019), September 9-13,
2019, Paris, France

• "Efficient Data Management for Near Real-Time Edge Analytics", PhD Symposium
on Data Science and Heterogeneous Computing, Third NESUS Winter School
(COST IC1305), January 22-25, 2018, Zagreb, Croatia

• "Adaptive Recovery of Incomplete Datasets for Edge Analytics". IEEE 2nd Inter-
national Conference on Fog and Edge Computing (ICFEC 2018), May 3, 2018,
Washington DC, USA

• "Efficient Edge Storage Management Based on Near Real-Time Forecasts". IEEE
1st International Conference on Fog and Edge Computing (ICFEC 2017), May 14,
2017, Madrid, Spain

Other Activities

• Organizing Committee: DCC 2020 (Web chair)

• Reviewer for Conferences and Workshops: ACM/SPEC ICPE 2022, IEEE
CLUSTER 2021, IC2E 2021, EURO-PAR 2017-2018 & 2021, CCGRID 2019-2020,
ICS 2020, UCC 2019-2020, IEEE CIM 2020, SBAC-PAD 2019, ICPADS 2017,
WORKS 2017.

151

http://intrasafed.ec.tuwien.ac.at/
http://rucon.ec.tuwien.ac.at/

A. Curriculum Vitæ

• Co-advised Students: Daniel Hofstätter (Bacchelor Thesis: "Evidential Deep
Learning in Object Detection", October 2021), Daniel Suchan (Bacchelor The-
sis: "Performance Benchmarking of Near Real-Time Inference on Heterogeneous
Edge Devices", August 2021), Dominik Jandl (Bacchelor Thesis: "Near-Real-Time
Deciscion-Making for Sensor-Based Edge Systems", July 2021), Ivan Bodrožić
(Master Thesis: "Near Real-Time Object Detection in Resource-constrained Edge
Environments", July 2020), Josip Lasić (Master Thesis: "Communication Models
for Edge/5G", July 2020)

• Memberships: Student Member, IEEE, 2017-2021

Publications

Refereed Publications in Journals

1. Ivan Lujic, Vincenzo De Maio, Srikumar Venugopal and Ivona Brandic. SEA-
LEAP: Self-adaptive and Locality-aware Edge Analytics Placement. IEEE Trans-
actions on Services Computing, 2021. DOI: 10.1109/TSC.2021.3104458 (Early
Access)

2. Ivan Lujic, Vincenzo De Maio and Ivona Brandic. Resilient Edge Data Manage-
ment Framework. IEEE Transactions on Services Computing, vol. 13, no. 4, pp.
663-674, 1 July-Aug, 2020. DOI: 10.1109/TSC.2019.2962016

Refereed Publications in Conference Proceedings

1. Ivan Lujic and Truong Hong-Linh. Architecturing Elastic Edge Storage Services
for Data-Driven Decision Making. In: Bures T., Duchien L., Inverardi P. (eds)
Software Architecture, European Conference on Software Architecture (ECSA),
Lecture Notes in Computer Science, vol 11681, pp. 97-105, Springer, Cham, 2019.
DOI: 10.1007/978-3-030-29983-5_7.

2. Ivan Lujic, Vincenzo De Maio and Ivona Brandic. Adaptive Recovery of Incomplete
Datasets for Edge Analytics. IEEE 2nd International Conference on Fog and Edge
Computing (ICFEC), 2018. DOI: 10.1109/CFEC.2018.8358726.

3. Ivan Lujic, Vincenzo De Maio and Ivona Brandic. Efficient Edge Storage Manage-
ment Based on Near Real-Time Forecasts. IEEE 1st International Conference on
Fog and Edge Computing (ICFEC), pp. 21-30, 2017. DOI: 10.1109/ICFEC.2017.9.

Refereed Publications in Workshop Proceedings

152

https://doi.org/10.1109/TSC.2021.3104458
https://doi.org/10.1109/TSC.2019.2962016
https://doi.org/10.1007/978-3-030-29983-5_7
https://doi.org/10.1109/CFEC.2018.8358726
https://doi.org/10.1109/ICFEC.2017.9

1. Ivan Lujic, Vincenzo De Maio, Klaus Pollhammer, Ivan Bodrozic, Josip Lasic and
Ivona Brandic. Increasing Traffic Safety with Real-Time Edge Analytics and 5G.
ACM Proceedings of the 4th International Workshop on Edge Systems, Analytics
and Networking (EdgeSys), pp. 19–24, April, 2021. DOI: 10.1145/3434770.3459732

Theses

• Ivan Lujić. Foundations for Sustainable and Trustworthy Edge Data Analytics.
PhD thesis, Faculty of Informatics, Vienna University of Technology, 2022, Vienna,
Austria. (to appear)

• Ivan Lujić. Analysis of unevenly spaced time series data in highly distributed and
unreliable networks. Master’s thesis, Faculty of Electrical Engineering, Mechanical
Engineering and Naval Architecture (FESB), University of Split, July, 2016, Split,
Croatia.

• Ivan Lujić. Usluge Amazon računalnog oblaka (Amazon Web Services). Bachelor’s
thesis (in Croatian), Faculty of Electrical Engineering, Mechanical Engineering and
Naval Architecture (FESB), University of Split, July, 2014, Split, Croatia.

Curriculum vitæ last updated: 10th January, 2022

153

https://doi.org/10.1145/3434770.3459732

	Abstract
	Kurzfassung
	Contents
	List of Figures
	List of Tables
	List of Algorithms
	Previous Publications
	Introduction
	Problem Statement
	Emerging Fields in Edge Data Analytics
	Research Questions
	Scientific Contributions
	Significance of the Study
	Thesis Organization

	Background
	Research Focus and Main Use Cases
	Methods and Analytics
	Edge Hardware and Network Resources
	Environment and Tools
	Research Contributions Roadmap

	Data Management Strategies for Near Real-Time Edge Analytics
	Background on Edge Data Management
	Adaptive Data Recovery Mechanism
	Efficient Edge Storage Management
	Mediator Component for Supporting Data Recovery

	Elastic Edge Data Services for Supporting Decision Making
	Importance of Elasticity in Edge Data Services
	Motivational Use Case
	Analysis of Edge Storage Services
	Engineering Principles for Edge Data Services

	Deployment of Edge Video Analytics Systems
	Increasing Traffic Safety with Real-Time Edge Analytics and 5G
	Data Locality-aware Edge Analytics Placement

	Evaluation
	Edge Data Management Services Evaluation
	System Deployment and a Performance Evaluation of Traffic Safety with Edge and 5G
	Self-adaptive and Locality-aware Edge Analytics Placement Evaluation

	Related Work
	IoT Data and Resource-limited Edge Systems
	Edge Data Management
	Elastic Edge Data and Storage Services for Decision Making
	Time-Critical Edge Analytics Systems
	Data Locality-Aware Edge Analytics Placement

	Conclusion
	Summary
	Limitations
	Future Work

	Glossary
	Bibliography
	Curriculum Vitæ

