
Architecturing Elastic Edge Storage Services for
Data-Driven Decision Making

Ivan Lujic1(�)[0000−0002−8564−6040] and Hong-Linh Truong2[0000−0003−1465−9722]

1 Institute of Information Systems Engineering, TU Wien, Austria
ivan.lujic@tuwien.ac.at

2 Department of Computer Science, Aalto University, Finland
linh.truong@aalto.fi

Abstract. In the IoT era, a massive number of smart sensors produce a
variety of data at unprecedented scale. Edge storage has limited capaci-
ties posing a crucial challenge for maintaining only the most relevant IoT
data for edge analytics. Currently, this problem is addressed mostly con-
sidering traditional cloud-based database perspectives, including storage
optimization and resource elasticity, while separately investigating data
analytics approaches and system operations. For better support of fu-
ture edge analytics, in this work, we propose a novel, holistic approach
for architecturing elastic edge storage services, featuring three aspects,
namely, (i) data/system characterization (e.g., metrics, key properties),
(ii) system operations (e.g., filtering, sampling), and (iii) data process-
ing utilities (e.g., recovery, prediction). In this regard, we present seven
engineering principles for the architecture design of edge data services.

Keywords: Edge data service · Architectural design · Edge computing
· Adaptation · Service computing · IoT · Engineering.

1 Introduction

The introduction of edge computing can help dealing with time sensitive re-
quirements for accurate decisions based on Internet of Things (IoT) data [12].
Unlike scalable cloud data repositories, edge systems have limited storage ca-
pacity, whereas certain amount of IoT sensor data have to be stored and pro-
cessed in proximity of the data sources [13]. Consequently, any edge data service
must store only the most relevant data for edge analytics (streaming or batch),
whereas non-relevant data have to be either discarded or moved to cloud data
centers. But the relevancy is determined by analytics contexts: these new edge
infrastructure conditions and new application analytics requirements, regarding
explosive growth of IoT data, force us to explore novel architectural design and
further implementations critical for elastic edge data services. By investigating
edge data services, we consider strategies, methods, mechanisms and operations
for handling and storing constantly generated data at the network edge. We
observe that even within a single edge analytics system:

(O1) IoT data are categorized into different model types representing multi-
model data, in particular near real-time streaming data and log-based data,

2 I. Lujic and H. L. Truong

thus, requiring different storage types and governance policies. They also include
different significance levels regarding to storage and edge analytics, especially for
critical applications, such as healthcare [6] (e.g., keeping the most important data
close to the data source) and smart manufacturing [11] (e.g., keeping significance
levels among data streams coming from industrial equipment for maintenance
purposes). Hence, all applications and sensors do not have equal importance;

(O2) Different IoT sensors include various errors such as missing data, out-
liers, noises and anomalies, affecting the designs of edge analysis pipelines and
corresponding differently to decision making processes. In this context, incom-
plete and noisy data can be critical, e.g., for traffic-dependent near real-time
route guidance [9], but can be tolerated by intelligent weather forecasts [8];

(O3) Data from different IoT sensors appear with different data generation
speed, consequently producing different data volumes for the same time interval.
Simultaneously, different types of monitored sensors require different data vol-
umes to make meaningful analytics. In systems like smart cities, it is crucial, for
example, to have big amount of frequent traffic measurements for managing traf-
fic flow in real-time. On the other hand, due to lower volatility, a weather station
can require much less data volumes from its sensors for accurate predictions.

Currently, all these highlighted issues are solved outside edge storage services.
Solutions for these issues are not included in existing designs of edge data services
because, as one might argue, such issues are analytic context-specific. However,
we argue that they are generic enough that can be customized and must be
incorporated into the design of (new) edge data storage systems. These observa-
tions indicate crucial changes for enhancing traditional approaches, which have
assumptions on consistent low latency, high availability and centralized storage
solutions, that cannot be generalized to the edge storage services and unreliable
IoT distributed systems. Our first step in solving the above-mentioned issues is
to focus on architectural requirements and designs. This paper will contribute:
(1) a detailed analysis of edge storage services with application-specific edge
analytics support and different utilities and analytics requirements; (2) a specifi-
cation of necessary principles for engineering highly customized software-defined
elastic storage services for dynamic data workload characterizations at the edge.

2 Motivation

In the IoT sensor environment, such as an exemplified university smart building
shown in Figure 1, we can observe data workloads from different IoT applications
and decide whether to (1) push data to the cloud data storage, (2) keep relevant
data for local edge analytics or (3) discard data if they are not useful for future
analytics. In the first case, traditionally, all data are transferred to resource-
rich cloud data centers where storage and compute intensive workloads can be
handled, resulting in necessary control commands for IoT actuators. However,
increasing data streams and latency requirements arising from IoT applications
makes distant cloud data transfer often impractical. Recent solutions for making
crucial fast decisions in IoT systems have increasingly used edge nodes.

Architecturing Elastic Edge Storage Services 3

CT

F

V

KW

CO

Sensors
Smart

buildings Gateway

Cloud API Cloud
layer

Edge API Edge
layer

HVAC

Energy
mgmt

Server
rooms

Laboratory

Weather
station

Single edge analytics system

Limited
storage

Fig. 1. Traditional single analytics system for university smart buildings use case

In an IoT system, such as a university smart building equipped with many
sensors measuring internal subsystems, it is obvious that data from HVAC (Heat-
ing, Ventilation, and Air Conditioning) sensors do not have the same importance
as data from smart meters and solar panels essential for energy management
(O1); incomplete data from weather stations can occur due to external condi-
tions while missing data coming from server room sensors can be caused by
some internal failures (O2); an energy management subsystem has higher data
generation frequency than a laboratory subsystem (O3). Accordingly, each of
these subsystems requires different approach to sensor data analysis, although
the same edge storage system is used to integrate data for edge analytics. In
addition, limited storage capacities at the network edge prevents us from keep-
ing all generated data. In the third case, due to the limited underlying network
infrastructure, some data can be filtered or reduced to save bandwidth usage
and storage space, but impacting later degradation of Quality of Service (QoS).

Edge analytics have to meet certain quality of analytics, including amounts
of data available, timely decisions and certain levels of data accuracy. Therefore,
we must identify which data should be kept at the edge nodes, how long should
data be stored, and which processing utilities can assist these problems, providing
ability to access the right data at the right time to make data-driven decisions.

3 Engineering Principles for Edge Data Services

Regarding three important aspects of edge storages, namely; edge data/system
characterization, application context and edging operations, we present seven
principles as guidelines for engineering of elastic edge storage services.
P1: Define and Provide Needed Metrics. To enable efficient customization
and adaptation among elements of edge storage systems, it requires a clear def-
inition and flexible monitoring of end-to-end metrics regarding data workloads,
application context and system activities.
How: Figure 2 shows end-to-end monitoring metrics that can assist in elastic
edge storage management. There are metrics present in four stages of data life

4 I. Lujic and H. L. Truong

Data
Collection

End-to-end Elasticity Metrics
 Data generation

rate
 Data volume/size
 Transmission

reliability
 Data quality

 Data sensitivity
 Application

requirements
(latency,
accuracy)

 Dependencies

 Storage
capacities

 Storage service
availability

 Storage service
costs

 Data volatility
 Prediction

accuracy
 Data correlation
 Time/space

complexity

Edge Storage
Services

Data
Preprocessing

Data
Analytics

Monitoring

Fig. 2. End-to-end monitoring metrics of elastic edge services through four data stages

cycle, namely data collection, data preprocessing, storage service analysis and
data analytics. However, the storage system must also allow definition of new
metrics at runtime, depending on application-specific requirements.
Tooling: There are many tools for monitoring cloud systems, e.g., Prometheus3,

and Fluentd4, but few able to monitor edge data metrics. These tools should
be equipped with additional features including pluggable components for edge
systems, such as fluentbit5, providing AI support and tracing instrumentation, as
a promising solution for providing end-to-end metrics for elastic storage services.
P2: Support Application-Specific Requirements. Based on sensor-specific
metrics and relevancy, we can combine different solutions to deliver appropriate
data to local analytics, while meeting application conditions, e.g., clean, complete
or normalize sensor data before storage and analysis. Further, customization for
secure and verifiable storage is required for applications with sensitive data.
How: Shown in Figure 3, depending on application information, different sen-
sor data have corresponding data flow routed through the edge architecture to
appropriate edge analytics, namely, descriptive, predictive or prescriptive. Inter-
connected storage nodes, with features including data recovery and edge storage
management mechanisms, ensure access to the relevant data at the right time
for different purposes. An algorithm repository contains a set of predefined pro-
cessing utilities, which usage and order are application-specific and dynamically
set at runtime in the elasticity management component. In addition, blockchain
integrator component can capture certain types of application-specific data and
pass them to the edge blockchain network for verification and auditing.
Tooling: A repository of available and pluggable microservices can speed up the
DevOps of storage services by supplying needed utilities. Different microservices
can be used to enable elastic activities, such as data cleaning, normalization
and data integration [2]. To keep relevant and complete data in space-limited
storage, nodes might incorporate an adaptive algorithm for efficient edge storage
management and an automatic mechanism for recovery of incomplete datasets.
P3: Enable Adaptive Data Handling. From a software management stand-
point, it is necessary to cope with heterogeneous data workloads including dy-
namic data streams, batch transfers, QoS critical requirements. Storage service

3 https://prometheus.io/ 4 https://www.fluentd.org/ 5 https://fluentbit.io/

Architecturing Elastic Edge Storage Services 5

Descriptive

Data (De-)
Compression

Transfer
from/to Cloud

Predictive

Edge Storage
Management

Data
Recovery

Application
Information

Elasticity
Management

Sensor
Data

Algorithm
Repository

Blockchain
Integrator

IoT EDGE CLOUD
Storage Nodes Local

Analytics

Prescriptive

Processing
Utilities

Processing
Utilities

... ...

Sensor
Data

Sensor
Data

Anomaly
Detection

Incident
Analysis

Data
Normalization

Data
Preparation

Data
Cleaning

Fig. 3. Application-specific data flows through a holistic edge architecture

should ensure that stored data are always available, relevant and complete, i.e.,
keeping data integrity by utilizing different system and data operations.
How: In this context, critical software technology running on the edge can play
an important role in storage resources abstraction, supporting communications,
configuring suitable data handling features and on-demand data transfers. Tech-
niques for auto-switch data handling algorithms/components should be explored.
Tooling: Fogger6 could be used to support dynamic allocation and contextual
location awareness of storage resources in distributed environment, and featuring
blockchain technology. Microservices-based design concepts, such as Edgex7 open
source platform, might enable decentralized and independent data handling as
well as reliable data integration supported by on-demand data services.
P4: Highly Customized System Bundling. Edge storage features should be
highly customized and application-aware. Considering data workloads and de-
ployment conditions, traditional inflexibility in software modules bundling can
produce over- or under-bundled features for supporting edge application analyt-
ics. Thus, flexible storage configurations need to meet deployment situations.
How: Based on application-specific information and internal constraints (capac-
ities, resources), the build and deployment process should bundle only compo-
nents to match these constraints for the right infrastructures. This forces us to
develop an optimizer for bundling and deploying different software modules. As
shown in Figure 3, different utilities should be available for customized bundling.
Tooling: Existing deploying tools like Docker Compose8, Ansible9, and Ter-

raform10, allow us to bundle and deploy stack of services but they do not enable
needed optimization. This requires us to leverage existing work and develop novel
algorithms based on edge node characteristics. Developed algorithms should se-
lect application-specific and customized services to build dependent components.
P5: Runtime Software-Defined Customization. Different inputs, such as
application information and data workload characteristics, have to be combined
to support runtime customization of elastic operations and data processing util-
ities. A way of combining these inputs must enable dynamic, software-defined

6 https://fogger.io/ 7 https://www.mainflux.com/ 8 https://docs.docker.com
9 https://www.ansible.com/ 10 https://www.terraform.io/

6 I. Lujic and H. L. Truong

Set of
objectives

Multi-objective
optimization

Set of
solutions

Elasticity
controller

Set of
operations

Control
commands

Elastic
operations

Data workload
characteristics

Application
information

Processing
utilities

Core APIs for
Storage Services

...
...

...
...

Load balancing

Adapt data freq.

System metrics Add nodes

Re-routing data

Replication

Actuator

Fig. 4. Elasticity management for customized data flows and edge storage services

components for the overall system management. A multi-objective optimization
mechanism should enable dynamic prioritization of IoT data and condition eval-
uation from SLOs at runtime, and thus would impact provided storage service.
How: Figure 4 illustrates potential control flow for elastic storage services. It
incorporates a loop for managing internal storage system initially taking valid
application information and current storage system metrics. To evaluate a set of
defined objectives, dynamic workload characteristics are combined with static
knowledge (elastic operations and processing utilities). To decide situational
trade-offs for data quality and storage capacities, and utilizing edging system
operations, we need to derive an optimization strategy for customized storage
with core software-defined APIs for data management and service operations.
Tooling: We need to provide approaches of dynamic configuration, runtime code
change (like model@runtime [4]) and services mesh, to combine different inputs
from distributed storage nodes. The Kinetic Edge11 could enable efficient load
balancing between distributed storage locations. Multi-objective optimization of
customized objectives, e.g., data quality and storage capacities, can be well ad-
dressed by using optimized data placement strategies in multi-cloud storage [14].
P6: Support IoT-Edge Continuum. This principle looks at impacting con-
stant data flows between IoT systems and edge storage services, while supporting
underlying protocols. According to edge storage performances, it requires trig-
gering different actions with changing data generation frequency on-demand.
How: Both IoT and edge nodes require developing an edge-IoT connector to
control data flows that can often be unpredictable. This connector should be able
to (1) discard incoming poor quality data; (2) apply various sampling commands
for collecting only relevant data; (3) trigger actions for turning off/on sensors in
producing data; highly impacting overall performance of edge storage services.
Tooling: Novel mechanisms from data viewpoint can be considered allowing IoT
sensors to securely receive and perform actuation requests from edge nodes and
programmability viewpoint supporting actuation capabilities for remote IoT de-
vice programmability. New design patterns for data pipelines should be imple-
mented to control unpredictable data flows and prevent low quality data.
P7: Support Edge-Cloud Continuum. This principle looks at inter-operation
and data transmission between edge and cloud storage systems (Figure 3). De-

11 https://www.vapor.io/kinetic-edge/

Architecturing Elastic Edge Storage Services 7

spite the advantages of edge nodes, it is obvious that for many applications,
cloud repositories still have to keep large datasets for complex data mining and
big data analytics. Thus, we need to support efficient and secure data transfer
of large datasets. With an increasing number of data-intensive applications and
bandwidth constraints, it will be crucial to reduce data traffic between the edge
and the cloud. Further, once large datasets are available in the cloud, analytics
models can be trained and then deployed at the edge for better decision making.
How: For efficient edge-cloud cooperation we must build an edge connector to the
cloud, supporting: (1) operation viewpoint featuring timely techniques for data
approximation, (de)compression and encryption/decryption; (2) network view-
point featuring mechanism to avoid excessive data traffic through limited net-
work infrastructure; (3) analytics viewpoint featuring coordination mechanism
for consistent analytics models employing elasticity and deployment strategies.
Tooling: The approaches to push and pull data on-demand can be investigated
for edge-cloud data transfer. Impact of symbolic data representation [10] can be
considered as a good starting point to avoid excessive data traffic. There is need
for a model to support secure data migration among multi-location data stores.

4 Related Work

System viewpoint. Various system operations have been used to build efficient
edge storage, e.g., authors in [1] discussed a data life cycle while investigating
the optimization of storage mechanisms and data management system design
for the IoT. The concept of data-centric communication [12] proposed different
management strategies to handle stored data from system viewpoint.
Application viewpoint. According to [3], it is possible to assign dynamic routes for
IoT data based on application context information, considering four objectives,
namely; lifetime, delay, reliability and data delivery, but only network viewpoint
is examined. Authors in [7] proposed Storage as a Service model where unused
storage space can be shared as a cloud-based service for different applications.
Design viewpoint. Some of the high-level requirements for dealing with a new
design of the edge storage service in our paper is inline with IoT common design
principles [15], but such IoT common principles do not dig into edge storage
services and analytics scenarios. High-level self-adaptation for edge computing
has been discussed in [5], but it does not focus on edge storage services for
application contexts. In our approach, we bridge aforementioned gaps leading to
customized software-defined elastic edge storage services.

5 Conclusions and Future Work

IoT data-intensive applications pose big challenges to satisfy their strict require-
ments for timely and accurate data-driven decision making, while relying on
resource constrained edge systems. It is crucial to dynamically define a highly
customized optimization strategy to handle incoming data from different per-
spectives as well as maintaining only the most relevant data for edge analytics.

8 I. Lujic and H. L. Truong

To scale future edge analytics processes, we present engineering principles and
demonstrate how they can potentially be implemented. In this context, proposed
approaches can help researchers to improve revealed dependencies in edge data
services. Although new insights are encouraging, many challenges are still open,
considering other application contexts and the implementation of principles.
Acknowledgments: The work in this paper has been partially funded through
Rucon project (Runtime Control in Multi Clouds), FWF Y 904 START-Programm
2015 and Ivan Lujic’s netidee scholarship by the Internet Foundation Austria.

References

1. Ali, N.A., Abu-Elkheir, M.: Data management for the internet of things: Green
directions. In: 2012 IEEE Globecom Workshops. pp. 386–390. IEEE (2012)

2. Ali, S., Jarwar, M.A., Chong, I.: Design methodology of microservices to support
predictive analytics for iot applications. Sensors 18(12), 4226 (2018)

3. Araújo, H.d.S., Rodrigues, J.J., Rabelo, R.d.A., Sousa, N.d.C., Sobral, J.V., et al.:
A proposal for iot dynamic routes selection based on contextual information. Sen-
sors 18(2), 353 (2018)

4. Blair, G., Bencomo, N., France, R.B.: Models@ run.time. Computer 42(10), 22–27
(Oct 2009)

5. D’Angelo, M.: Decentralized self-adaptive computing at the edge. In: International
Conference on Software Engineering for Adaptive and Self-Managing Systems. pp.
144–148. ACM (2018)

6. Dimitrov, D.V.: Medical internet of things and big data in healthcare. Healthcare
informatics research 22(3), 156–163 (2016)

7. He, W., Yan, G., Da Xu, L.: Developing vehicular data cloud services in the iot
environment. IEEE Transactions on Industrial Informatics 10(2), 1587–1595 (2014)

8. Lai, L.L., Braun, H., Zhang, Q.P., Wu, Q., Ma, Y.N., Sun, W.C., Yang, L.: In-
telligent weather forecast. In: International Conference on Machine Learning and
Cybernetics. vol. 7, pp. 4216–4221 (2004)

9. Lederman, R., Wynter, L.: Real-time traffic estimation using data expansion.
Transportation Research Part B: Methodological 45(7), 1062–1079 (2011)

10. Lin, J., Keogh, E., Wei, L., Lonardi, S.: Experiencing sax: a novel symbolic rep-
resentation of time series. Data Mining and knowledge discovery 15(2), 107–144
(2007)

11. ODonovan, P., Leahy, K., Bruton, K., OSullivan, D.T.: An industrial big data
pipeline for data-driven analytics maintenance applications in large-scale smart
manufacturing facilities. Journal of Big Data 2(1), 25 (2015)

12. Psaras, I., Ascigil, O., Rene, S., Pavlou, G., Afanasyev, A., Zhang, L.: Mobile data
repositories at the edge. In: Workshop on Hot Topics in Edge Computing (2018)

13. Satyanarayanan, M., Simoens, P., Xiao, Y., Pillai, P., Chen, Z., Ha, K., Hu, W.,
Amos, B.: Edge analytics in the internet of things. IEEE Pervasive Computing
14(2), 24–31 (2015)

14. Su, M., Zhang, L., Wu, Y., Chen, K., Li, K.: Systematic data placement opti-
mization in multi-cloud storage for complex requirements. IEEE Transactions on
Computers 65(6), 1964–1977 (2016)

15. Vogel, B., Gkouskos, D.: An open architecture approach: Towards common design
principles for an iot architecture. In: Proceedings of the 11th European Conference
on Software Architecture: Companion Proceedings. pp. 85–88. ACM (2017)

